Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3)+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
2)
a
v
à
b
l
ẻ
n
ê
n
a
=
2k+1,
b
=
2m+1
(V
ớ
i
k,
m
N)
a
2
+
b
2
=
(2k+1)
2
+
(2m+1)
2
=
4k
2
+
4k
+
1
+
4m
2
+
4m
+
1
=
4(k
2
+
k
+
m
2
+
m)
+
2
=
4t
+
2
(V
ớ
i
t
N)
Kh
ô
ng
c
ó
s
ố
ch
í
nh
ph
ươ
ng
n
à
o
c
ó
d
ạ
ng
4t
+
2
(t
N)
do
đó
a
2
+
b
2
kh
ô
ng
th
ể
l
à
s
ố
ch
í
nh
ph
ươ
ng
Vì a là số chia hết cho 5 => a có c/s tận cùng là 0 hoặc 5
+ Với a có c/s tận cùng là 0
=> a+2 có c/s tận cùng là 2
=> a+2 ko là số chính phương (Vì số chính phương có c/s tận cùng là 0;1;4;9 hoặc 6)
+ Với a có c/s tận cùng là 5
=>a+2 có c/s tận cùng là 7
=> a+2 ko là số chính phương (Vì số chính phương có c/s tận cùng là 0;1;4;9 hoặc 6)
Vậy cho a là 1 số chia hết cho 5 thì rằng a+2 không phải là số chính phương. Bài toán dc chứng minh
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
k mik nha!mấy bạn
:D
Gọi hai số chính phương liên tiếp đó là k2 và (k+1)2
Ta có:
k2+(k+1)2+k2.(k+1)2
=k2+k2+2k+1+k4+2k3+k2
=k4+2k3+3k2+2k+1
=(k2+k+1)2
=[k(k+1)+1]2 là số chính phương lẻ.
gọi 2 số chính phương liên tiếp là k^2 và (k + 1)^2
theo đề bài ta có :
k^2 + (k+1)^2 + k^2(k+1)^2
= k^2 + k^2 + 2k + 1 + k^2(k^2 + 2k + 1)
= 2k^2 + 2k + 1 + k^4 + 2k^3 + k^2
= k^4 + 2k^3 + 3k^2 + 2k + 1
= k^4 + k^2 + 1 + 2k^3 + 2k^2 + 2k
= (k^2 + k + 1)^2
= [k(k+1)+1]^2
k(k+1) chia hết cho 2 (2 số tự nhiên liên tiếp) => k(k+1) +1 lẻ
=> [k(k+1)+1)^2 là số chính phương lẻ
Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:
\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)
\(=n^4+2n^3+3n^2+2n+1\)
Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)
\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)
\(=\left(n+\dfrac{1}{n}+1\right)^2\)
\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)
Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.
Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)
Theo đề ta có :
\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)
\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)^2\)
\(=\left[n\left(n+1\right)+1\right]^2\)
mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)
\(\Rightarrow n\left(n+1\right)+1\) là số lẻ
\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ
\(\Rightarrow dpcm\)
a và b lẻ
=> a=2k+1
b=2m+1
(k là số tự nhiên)
=>a2+b2=(2k+1)(2k+)+(2m+2)(2m+1)
=4k2+4k+1+4m2+4m+1
=4(k2+k+m2+m) + 2
mà số chính phương chia 4 chỉ có số dư 0 hoặc 1
=> a2+b2 không phải số chính phương
=>đpcm