K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

 Gọi hai số chính phương liên tiếp đó là k2 và (k+1)2

Ta có:

k2+(k+1)2+k2.(k+1)2

=k2+k2+2k+1+k4+2k3+k2

=k4+2k3+3k2+2k+1

=(k2+k+1)2

=[k(k+1)+1]2 là số chính phương lẻ.

9 tháng 2 2020

làm nhanh Cho nick face thì làm

2 tháng 8 2023

Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:

\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)

\(=n^4+2n^3+3n^2+2n+1\)

Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)

\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)

\(=\left(n+\dfrac{1}{n}+1\right)^2\)

\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)

 Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.

 

 

 

2 tháng 8 2023

Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)

Theo đề ta có :

\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)

\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)^2\)

\(=\left[n\left(n+1\right)+1\right]^2\)

mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)

\(\Rightarrow n\left(n+1\right)+1\) là số lẻ

\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ

\(\Rightarrow dpcm\)

10 tháng 5 2016

Hai số chính phương liên tiếp lúc nào cũng là 1 chẵn và một lẻ. Nên tổng của chúng sẽ là số lẻ và tích của chúng  sẽ là số chẵn mà số lẻ cộng với số chẵn sẽ ra số lẻ. 

4 tháng 3 2022

mày lớp mấy

4 tháng 3 2022

\(a)\) \(Thay\) \(x=2\) \(\text{ vào }\)\(PT:\)

\(2m-3=2m-2-1.\\ \Leftrightarrow2m-3-2m+2+1=0.\)

\(\Leftrightarrow0=0\) (luôn đúng).

\(\Rightarrow\) PT luôn nhận x = 2 làm nghiệm với mọi giá trị của m.

11 tháng 7 2016

Gọi hai số chính phương liên tiếp lần lượt là \(n^2,\left(n+1\right)^2\) (\(n\in N^{\text{*}}\))

Ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+n^2+\left(n^2+2n+1\right)\)

\(=n^2\left(n+1\right)^2+2n\left(n+1\right)+1=\left[n\left(n+1\right)+1\right]^2\)

Dễ thấy n(n+1) chia hết cho 2 vì là tích của hai số tự nhiên liên tiếp => n(n+1) là số chẵn => n(n+1) + 1 là số lẻ

\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là một số chính phương lẻ.

Vậy ta có điều phải chứng minh.

7 tháng 11 2018

Gọi 2 số chính phương liên tiếp là a2 và (a + 1)2

Ta có: \(A=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

\(=\left[a\left(a+1\right)\right]^2+2a^2+2a+1\)

\(=\left[a\left(a+1\right)\right]^2+2a\left(a+1\right)+1=\left[a\left(a+1\right)+1\right]^2\)

Ta thấy \(a\left(a+1\right)+1\) là số lẻ nên A là số chính phương lẻ (đpcm)

5 tháng 2 2020

gọi 2 số chính phương liên tiếp là k^2 và (k + 1)^2

theo đề bài ta có : 

k^2 + (k+1)^2 + k^2(k+1)^2 

= k^2 + k^2 + 2k + 1 + k^2(k^2 + 2k + 1)

= 2k^2 + 2k + 1 + k^4 + 2k^3 + k^2

= k^4 + 2k^3 + 3k^2 + 2k + 1

= k^4 + k^2 + 1 + 2k^3 + 2k^2  + 2k 

= (k^2 + k + 1)^2

= [k(k+1)+1]^2

k(k+1) chia hết cho 2 (2 số tự nhiên liên tiếp) => k(k+1) +1 lẻ

=> [k(k+1)+1)^2 là số chính phương lẻ

5 tháng 2 2020

Giả sử hai số chính phương liên tiếp đó là \(a^2,\left(a+1\right)^2\)

Ta có : \(a^2+\left(a+1\right)^2+a.\left(a+1\right)\)

\(=a^2+a^2+2a+1+a^2+a\)

\(=3a^2+3a+1\)

.....