K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

Ta có phương trình \(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)

Ta lại có \(x^2y^2+y^2z^2+z^2x^2\ge3\sqrt[3]{\left(xyz\right)^4}=3xyz\sqrt[3]{xyz}\)

\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)

\(\Leftrightarrow1\ge\sqrt[3]{xyz}\ge0\)

\(\Leftrightarrow1\ge xyz>0\)

Vì x,y,z nguyên 

=> xyz=1

Vậy x,y,z là \(\left\{1,1,1;1,-1,-1;-1,-1,1;-1,1,-1\right\}\)

Cre: @tpokemont

5 tháng 5 2020

điều kiện : x,y,z khác 0

Ta có : \(3=\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}=\frac{y^2z^2+x^2z^2+x^2y^2}{xyz}>0\)

Mà \(y^2z^2+x^2z^2+x^2y^2>0\Rightarrow xyz>0\)

\(\Rightarrow\frac{yz}{x},\frac{xz}{y},\frac{xy}{z}>0\)

Áp dụng BĐT Cô-si cho 3 số dương,ta có :

\(3=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge3\sqrt[3]{xyz}\ge3\)

Dấu "=" xảy ra khi | x | = | y | = | z |

Do đó : \(3=3\sqrt[3]{xyz}\)

\(\Rightarrow\hept{\begin{cases}xyz=1\\\left|x\right|=\left|y\right|=\left|z\right|\end{cases}}\)

+) Trường hợp x,y,z > 0 ta được x = y = z = 1

+) trường hợp hai trong 3 số x,y,z là số âm, ta có ( x; y ; z ) = ( 1 ; -1 ; -1 ) và các hoán vị

vậy....

4 tháng 1 2016

ban copy link nay :http://olm.vn/hoi-dap/question/305600.html roi vao google tra la có

 

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Lời giải:

ĐK: $x,y,z\neq 0$

Ta thấy: \(\frac{xy}{z}.\frac{yz}{x}=y^2>0\) với mọi $y\neq 0$

$\Rightarrow \frac{xy}{z}, \frac{yz}{x}$ cùng dấu

Tương tự: $\frac{yz}{x}, \frac{xz}{y}$ cùng dấu

$\Rightarrow \frac{xy}{z}, \frac{yz}{x}, \frac{xz}{y}$ cùng dấu.

Nếu cùng dấu âm thì hiển nhiên tổng của chúng phải âm (vô lý vì $3>0$)

Do đó $\frac{xy}{z}, \frac{yz}{x}, \frac{xz}{y}>0$

$\Rightarrow \frac{xy}{z}.\frac{yz}{x}.\frac{xz}{y}=xyz>0(1)$

Áp dụng BĐT AM-GM:

\(3=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\geq 3\sqrt[3]{xyz}\Rightarrow xyz\leq 1(2)\)

Từ $(1);(2)\Rightarrow xyz=1$

$\Rightarrow (x,y,z)=(1,1,1); (-1,-1,1); (-1,1,-1); (1,-1,-1)$

7 tháng 8 2018

Hãy tích nếu như bạn thông minh

Ai ko tích là bình thường

Còn ai dis là "..."

5 tháng 5 2020

Ta có : \(\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy-\left(x+y\right)+1\ge0\)

\(\Rightarrow xy+z+1\ge x+y+z\Rightarrow\frac{y}{xy+z+1}\le\frac{y}{x+y+z}\)

Tương tự : \(\frac{x}{xz+y+1}\le\frac{x}{x+y+z}\)\(\frac{z}{yz+x+1}\le\frac{z}{x+y+z}\)

Cộng lại,ta được :

\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)( 1 )

Mà \(x+y+z\le3\Rightarrow VP=\frac{3}{x+y+z}\ge1\)( 2 )

Dấu "=" xảy ra khi x = y = z = 1

Từ ( 1 ) và ( 2 ) suy ra x = y = z = 1

Vậy ...

22 tháng 1 2017

Ta có: \(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=3\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)

\(\Rightarrow xyz\ge0\)(1)

Ta lại có: \(x^2y^2+y^2z^2+Z^2x^2\ge3xyz\sqrt[3]{xyz}\)

\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)

\(\Leftrightarrow xyz\le1\)(2)

Từ (1) và (2) ta được: \(0\le xyz\le1\)

Mà x, y, z khác 0 nên suy ra xyz = 1

\(\Rightarrow\)(x, y, z) = (1,1,1; -1,-1,1; -1,1,-1; 1,-1,-1)

19 tháng 11 2017

Áp dụng bất đẳng thứ Cauchy (AM-GM):

\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)

Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)

Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\)  (1)

Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\)  (2) 

Và:  \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\)  (3) 

Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)

Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)

19 tháng 11 2017

Cô si 3 số đó lại đi

24 tháng 12 2017

tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:

Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)

Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)

\(=\left(x+y+z\right)^3.\)(2)

TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

24 tháng 12 2017

2)Ta có:

\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)

Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)

Áp dụng svac-xơ ta có:

\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)

15 tháng 11 2018

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

15 tháng 11 2018

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé