Cho a + b = 14 biết ab - ba = 18 tìm AB
giải cho mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{ab}-\overline{ba}=18\\ =>\overline{a0}+b-\left(\overline{b0}+a\right)=18\\ =>a\times10+b-b\times10-a=18\\ =>a\times9-b\times9=18\\ =>9\times\left(a-b\right)=18\\ =>a-b=2=>a=b+2\)
Thay a=b+2 vào a+b=14 ta được :
b+2+b=14 => 2 x b= 12
=> b = 6
=> a = 6+2 = 8
Vậy a=8,b=6
Ta có : \(a+b=14\Rightarrow a=14-b\) \(\left(a,b\inℕ^∗|a>b\right)\)
Thay a = 14 - b vào ab - ba = 18, ta đc :
\(ab-ba=18\)
\(\Leftrightarrow10a+b-10b-a=18\)
\(\Leftrightarrow10\left(14-b\right)+b-10b-14+b=18\)
\(\Leftrightarrow140-10b+b-10b-14+b-18=0\)
\(\Leftrightarrow108-18b=0\)
\(\Leftrightarrow b=6\)
Ta có b = 6 nên a = 14 - b = 14 - 6 = 8
Thử a, b vào biểu thức thỏa mãn
Vậy a = 8, b = 6
Ta có :
ab - ba = 18
10 x a + b - 10 x b + a = 18
9 x a = 9 x b + 18
a = b + 2
a - b = 2
=>a = 7
b = 5
k cho mình nha !
Bài giải: \(a.14=\overline{ab}\Leftrightarrow a.14=10a+b\)
\(\Leftrightarrow4a=b\)
Điều kiện : \(a\div0;0\le a;b< 10;a;b\in N\)
Nên ta tìm được : \(\orbr{\begin{cases}\hept{\begin{cases}a=1\\b=4\end{cases}}\\\hept{\begin{cases}a=2\\b=8\end{cases}}\end{cases}}\Rightarrow\overline{ab}\in\left\{14;28\right\}.\)
\(ab+ba=132\)
\(\left(a+b\right)\cdot11=132\)
\(a+b=132:11\)
\(a+b=12\)
\(a-b=4\)
\(a=\left(12+4\right):2=8\)
\(b=8-4=4\)
Ta co: \(ab+ba=132\)
\(a.10+b+b.10+a=132\)
\(a.11+b.11=132\)
\(\left(a+b\right)11=132\)
\(a+b=12\)
Ma \(a-b=4\Rightarrow a=4+b\)
\(\Rightarrow4+b+b=12\Rightarrow b=4\Rightarrow a=8\)
Vay \(ab=84\)
ab - ba = 18
ab ở đây là số có hai chữ số phải không em