cho A(3;2), B(1;-3), C(1;4)
a) tìm tọa độ vecto AB, vecto BC, vecto CA
b) tìm chu vi tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)
Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)
Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)
Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)
P/S: bt làm có bài này thôi :v
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Ủng hộ mk nha !!! ^_^
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Ví dụ: a = 6, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 9 không chia hết cho 6.
Ví dụ: a = 9, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 12 không chia hết cho 9.
Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 4.
Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 6.
Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 6.
Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 9.
Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 4.
😎 Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 6.
Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 9.
Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 6.
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
a/
\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)
\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)
b/
\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)
\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9
c/
\(3A=3^2+3^3+3^4+...+3^{121}\)
\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)
\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương
a: A(3;2); B(1;-3); C(1;4)
Tọa độ vecto AB là:
\(\left\{{}\begin{matrix}x=x_B-x_A=1-3=-2\\y=y_B-y_A=-3-2=-5\end{matrix}\right.\)
Vậy: \(\overrightarrow{AB}=\left(-2;-5\right)\)
Tọa độ vecto AC là:
\(\left\{{}\begin{matrix}x=x_C-x_A=1-3=-2\\y=y_C-y_A=4-2=2\end{matrix}\right.\)
Vậy: \(\overrightarrow{AC}=\left(-2;2\right)\)
=>\(\overrightarrow{CA}=\left(2;-2\right)\)
Tọa độ vecto BC là:
\(\left\{{}\begin{matrix}x=x_C-x_B=1-1=0\\y=y_C-y_B=4-\left(-3\right)=7\end{matrix}\right.\)
Vậy: \(\overrightarrow{BC}=\left(0;7\right)\)
b: \(\overrightarrow{AB}=\left(-2;-5\right);\overrightarrow{AC}=\left(-2;2\right);\overrightarrow{BC}=\left(0;7\right)\)
\(AB=\sqrt{\left(-2\right)^2+\left(-5\right)^2}=\sqrt{29}\)
\(AC=\sqrt{\left(-2\right)^2+2^2}=2\sqrt{2}\)
\(BC=\sqrt{0^2+7^2}=7\)
Chu vi tam giác ABC là:
\(AB+AC+BC=2\sqrt{2}+\sqrt{29}+7\)