K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

nếu câu là c/m BD//MN thì BD và MN sẽ ko bao giờ cắt nhau nên đề câu b sai!

1 tháng 1 2017

Mình gợi ý câu b thôi, tại thấy câu a không có gì khó hết.

A D B M N X Y K

Gọi \(X,Y\) lần lượt là trung điểm \(MN,BD\). Tự CM \(A,X,Y,C\) thẳng hàng.

Cho \(XK\) cắt \(BD\) tại \(Y'\). Theo định lí Thales cho tam giác \(MXK,NXK\) CM được \(Y'\) là trung điểm \(BD\).

Tức là \(Y\) trùng với \(Y'\), tức là \(XY\) qua \(K\) hay \(A,K,C\) thẳng hàng.

16 tháng 10 2017

Trần Quốc Đạt ! hình như hình bạn sai đáy

5 tháng 9 2023

a] Để chứng minh AF // BD, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác ACF và BDE. Ta có:

AC/BD = AD/BE (vì AF // BD) AC/AD = BE/BD (vì AM // BD và BN // BD)

Từ hai tỉ số trên, ta có:

AC/AD = BE/BD

Vậy, ta đã chứng minh được AF // BD.

b] Để chứng minh E là trung điểm CF, ta cần chứng minh CE = EF và CF // AB. Ta có:

CE = AM (vì CE // AM và AC // BD) EF = BN (vì EF // BN và AC // BD)

Vậy, ta đã chứng minh được E là trung điểm CF.

18 tháng 12 2022

a: Xét ΔOAN và ΔOCM có

góc AON=góc COM

OA=OC

góc OAN=góc OCM

DO đó: ΔOAN=ΔOCM

=>ON=OM

=>O là trung điểm của MN

b: Xét ΔBAC co NF//AC

nên NF/AC=BN/BA=DM/DC

Xét ΔDAC có EM//AC

nên EM/AC=DM/DC=NF/AC

=>EM=NF

mà EM=NF

nên EMFN là hình bình hành

c: Vì EMFN là hình bình hành

nen EF cắt MN tại trung điểm của mỗi đường

=>O là trung điểm của EF

=>MN,EF,AC,BD đồng quy

a, Có: hcn ABCD (gt)

=> AB // CD ( t/c )

     O là trung điểm AC ( t/c ) => OA = OC.

Có: AB // CD ( cmt )

=> AN // MC

=> \(\widehat{NAO}=\widehat{MCO}\left(SLT\right)\)

Xét △ANO và △CMO có:

\(\widehat{NAO}=\widehat{MCO}\left(cmt\right)\)

OA = OC ( cmt )

\(\widehat{AON}=\widehat{COM}\left(đ^2\right)\)

=> △ANO = △CMO ( g.c.g )

=> ON = OM ( 2 cạnh tương ứng )

=> O là trung điểm MN 

=> M và N đối xứng nhau qua O.

b, Có: NF // AC ( gt )

          ME // AC ( gt )

=> NF // ME

=> \(\widehat{EMN}=\widehat{FNM}\left(SLT\right)\)

Có: △ANO = △CMO ( cmt )

=> \(\widehat{ENM}=\widehat{FMN}\left(2gtu\right)\)

Xét △ENM và △FMN có:

\(\widehat{ENM}=\widehat{FMN}\left(cmt\right)\)

MN chung

\(\widehat{EMN}=\widehat{FNM}\left(cmt\right)\)

=> △ENM = △FMN (g.c.g)

=> EM = FN ( 2ctu )

Mà EM // FN ( cmt ) 

=> ENFM là hbh ( dhnb )

Câu cuối không biết làm=)))