K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Mình gợi ý câu b thôi, tại thấy câu a không có gì khó hết.

A D B M N X Y K

Gọi \(X,Y\) lần lượt là trung điểm \(MN,BD\). Tự CM \(A,X,Y,C\) thẳng hàng.

Cho \(XK\) cắt \(BD\) tại \(Y'\). Theo định lí Thales cho tam giác \(MXK,NXK\) CM được \(Y'\) là trung điểm \(BD\).

Tức là \(Y\) trùng với \(Y'\), tức là \(XY\) qua \(K\) hay \(A,K,C\) thẳng hàng.

16 tháng 10 2017

Trần Quốc Đạt ! hình như hình bạn sai đáy

3 tháng 8 2017

nếu câu là c/m BD//MN thì BD và MN sẽ ko bao giờ cắt nhau nên đề câu b sai!

28 tháng 1 2022

a) Xét tam giác ABC có: OE // BC (gt).

\(\Rightarrow\) \(\dfrac{AE}{AB}=\dfrac{AO}{AC}\left(Talet\right).\left(1\right)\)

Xét tam giác ACD có: OF // CD (gt).

\(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AO}{AC}\left(Talet\right).\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AE}{AB}.\)

Xét tam giác ABD có: \(\dfrac{AF}{AD}=\dfrac{AE}{AB}\left(cmt\right).\)

\(\Rightarrow\) EF // BD (định lý Talet đảo).

 

5 tháng 9 2023

a] Để chứng minh AF // BD, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác ACF và BDE. Ta có:

AC/BD = AD/BE (vì AF // BD) AC/AD = BE/BD (vì AM // BD và BN // BD)

Từ hai tỉ số trên, ta có:

AC/AD = BE/BD

Vậy, ta đã chứng minh được AF // BD.

b] Để chứng minh E là trung điểm CF, ta cần chứng minh CE = EF và CF // AB. Ta có:

CE = AM (vì CE // AM và AC // BD) EF = BN (vì EF // BN và AC // BD)

Vậy, ta đã chứng minh được E là trung điểm CF.