K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2023

tui lớp 8 ko bt làm :)

 

5 tháng 11 2023

trời ơi cíu tui

 

\(E=25\left[3\cdot\left(5+4^2+4^3+...+4^{2021}\right)+1\right]\)

\(=25\cdot\left(4^2+4^2+4^3+...+4^{2021}\right)\)

\(=25\cdot4^{2022}⋮4^{2022}\)

 

 

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$

$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$

$\Rightarrow 3A=4^{2022}-1$

$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$

Ta có đpcm.

7 tháng 1 2016

đặt biểu thức ban đầu là A, 42020+42019+...+4+1=B

4B=42021 +42020 +42019+...+42+4

3B=4B-B=42021-1  => B= (42021-1)/3

A=75B+25=75(42021-1)/3 + 25= 25(42021-1)+25=25(42021-1+1)=25.42021=100.42020

=> A chia hết cho cả 100 và 42021

mặt khác A=25.42021=42021.(24+1)=24.42021+42021=6.42022+42021 

vì 42021<42022 nên A chia 42022 dư 42021

tick cho mk nha!!!!!!!!

 

 

19 tháng 7 2023

Để chứng tỏ rằng dãy giá trị 2/3^3, 3/4^3, 4/5^3, ..., 2021/2022^3, 2022/2023^3 không phải là số tự nhiên, chúng ta có thể sử dụng phương pháp giả sử đối chứng.

Giả sử rằng dãy giá trị này là số tự nhiên, tức là tất cả các phần tử trong dãy đều là các số tự nhiên. Ta xem xét phần tử cuối cùng của dãy, tức là 2022/2023^3.

Nếu 2022/2023^3 là số tự nhiên, thì 2022/2023^3 + 1 cũng phải là số tự nhiên.

Tuy nhiên, nếu ta tính giá trị của biểu thức 2022/2023^3 + 1,

ta sẽ có: 2022/2023^3 + 1 = (2022 + 2023^3) / 2023^3

Với các giá trị số học, ta biết rằng tỷ số của hai số nguyên không thể tạo ra một số nguyên khác. Do đó, biểu thức trên không thể là số tự nhiên.

Vậy, ta có thể kết luận rằng dãy giá trị 2/3^3, 3/4^3, 4/5^3, ..., 2021/2022^3, 2022/2023^3 không phải là số tự nhiên.

17 tháng 4 2017

Chắc đặt nhầm lớp rồi

Ta có :\(B=4^{2004}+4^{2003}+...+4^2+4+1\)

\(4B=\left(4^{2004}+4^{2003}+...+4^2+4+1\right).4\)

\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)

\(4B-B=\left(4^{2005}+4^{2004}+...+4^3+4^2+4\right)\)\(-\left(4^{2004}+4^{2003}+...+4+1\right)\)

\(3B=\left(4^{2005}-1\right)\)\(\Rightarrow\frac{4^{2005}-1}{3}\)

\(\Rightarrow A=75.\frac{4^{2005}-1}{3}+25\)

\(\Rightarrow A=25.\left(4^{2005}-1\right)+25\)

\(\Rightarrow A=25.\left(4^{2005}-1+1\right)\)

\(\Rightarrow A=25.4.4^{2004}\)

\(\Rightarrow A=100.4^{2004}\)

Mà 100 chia hết 100 nên \(100.4^{2004}\) chia hết cho 100

17 tháng 4 2017

B=4^0 + 4^1 +...+ 4^2004

4B=4^1+4^2+...+4^2005

3B=4^2004-4^0

B=(4^2004-4^0):3

Thay B vào  ta có :

A=75.(4^2004-4^0):3+25

A=25.(4^2004-4^0)+25

A=25.4^2004

A=100.4^2003

Vậy A chia hết cho 100