\(75.\left(4^{2021}+4^{2020}+...4^2+4+1\right)\)+25 chia hết cho 100
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$

$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$

$\Rightarrow 3A=4^{2022}-1$

$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$

Ta có đpcm.

1 tháng 2 2018

a, Vì 3^100 và 19^990 đều lẻ nên 3^100+19^990 chẵn

=> 3^100+19^990 chia hết cho 2

b, Gọi 4 số tự nhiên liên tiếp lần lượt là : n;n+1;n+2;n+3 ( n thuộc N )

Xét : n+n+1+n+2+n+3 = 4n+6

Vì 4n chia hết cho 4 mà 6 ko chia hết cho 4 => 4n+6 ko chia hết cho 4

=> ĐPCM

Tk mk nha

13 tháng 7 2020

nguyễn anh quân bạn phải giải thích ra vì sao 3^100 và 19^990 là số lẻ chứ

Bài 1 : 

Gọi 3 số chẵn liên tiếp là \(2a-2,2a,2a+2\)

Tích 3 số \(\left(2a-2\right)2a\left(2a+2\right)=8.\left(a-1\right)a\left(a+1\right)\)

Vì \(\left(a-1\right)a\left(a+1\right)⋮3\)\(\Leftrightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

nên \(\left(2a-2\right).2a.\left(2a+2\right)\)

Vậy \(\left(2a-2\right).2a.\left(2a+2\right)\)

Bài 2 

a) \(\left(5^n-1\right)⋮4\)

Nếu \(n=1\)thì \(5^n-1=4⋮4\)

Nếu \(n>1\)thì \(5^n\)có hai chữ số tận cùng là \(25\Rightarrow5^n-1\)có hai chữ số tận cùng là \(24\),chia hết cho  \(4\)

Vậy \(\left(5^n-1\right)⋮4\)

b) \(\left(10^n+18n-1\right)⋮27\)

Ta có :\(10^n-1=99.....9\)(n chữ số 9)

\(\Rightarrow10^n+18n^{ }-1=99...9+18n=9.\left(11....1+2n\right)\)(n chữ số 1 )

Ta có \(\left(11....1+2n\right)⋮3\)( Vì \(11...1+2n\)có tổng các chữ số bằng \(3n⋮3\)

\(\Rightarrow\left(10^n+18n-1\right)⋮9.3\)hay \(\left(10^n+18n-1\right)⋮27\)

Chúc bạn học tốt ( -_- )

23 tháng 6 2016

\(17^{25}=17^{24}.17=\left(17^2\right)^{12}.17\)

           =\(...1.17=...7\)

\(24^4=...6\)

\(13^{21}=13^{20}.13=\left(13^2\right)^{10}.13=...1.13\)

          \(=...3\)

=>M=...7+...6-...3=..0

Vậy M chia hết cho 10

^.....^ mk nha các bạn!!!!

19 tháng 3 2017

\(a^2nha\)

21 tháng 8 2018

Chúng tỏ rằng : 

a) M = 4^10 - 2^18 chia hết cho 3 

M = 4^10 - 2^18 

M = ( 2^2 )^10 - 2^18 

M = 2^20 - 2^18 

M = 2^18 . 2^2 - 2^18 . 1 

M = 2^18 . 4 - 2^18 . 1 

M = 2^18 . ( 4 - 1 ) 

M = 2^18 . 3 chia hết cho 3 

Vậy M chia hết cho 3 

31 tháng 12 2018

a. Ta có :

\(3^{100}=\left(3^4\right)^{25}=\left(....1\right)\)

\(19^{990}=19^{989}.19=\left(...9\right).19=\left(....1\right)\)

\(\Leftrightarrow3^{100}+10^{990}=\left(..1\right)+\left(...1\right)=\left(....2\right)⋮2\left(đpcm\right)\)

Vậy...

b. Gọi 4 số tự nhiên liên tiếp là a, a + 1, a + 2, a + 3

\(\Leftrightarrow a+a+1+a+2+a+3=4a+6\)

Ta thấy : \(4a⋮4;6⋮4̸\)

\(\Leftrightarrow4a+6⋮4̸\)

\(\Leftrightarrow\) Tổng của 4 số tự nhiên liên tiếp không chia hết cho 4

10 tháng 12 2015

a) = 1000........8

=> chia hết cho 9

b) Gộp 3 số lại 

1 tháng 11 2018

\(M=2+2^3+2^5+2^7+....+2^{51}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+....+\left(2^{49}+2^{51}\right)\)

\(=10+2^4\left(2+2^3\right)+....+2^{48}\left(2+2^3\right)\)

\(=10+2^4.10+...+2^{48}.10\)

\(=10\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮10\)

\(=2.5.\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮5\)

1 tháng 11 2018

\(M=2+2^3+2^5+2^7+....+2^{51}.\)

\(M+2^{ }=2+2+2^3+2^5+2^7+.....+2^{51}\)

\(=\left(2+2+2^3\right)+\left(2^5+2^7+2^9\right)+....+\left(2^{47}+2^{49}+2^{51}\right)\)

\(=12+2^4\left(2+2^3+2^5\right)+......+2^{46}\left(2+2^3+2^5\right)\)

\(=12+2^4.42+....+2^{46}.42\)

\(=12+7.3.2\left(2^4+...+2^{46}\right)\)

\(\Rightarrow M=\left[12+7.3.2\left(2^4+.....+2^{46}\right)\right]-2\)

\(=10+7.3.2\left(2^4+....+2^{46}\right)\)

Ta có:  \(7.3.2\left(2^4+...+2^{46}\right)⋮7\)mà 10 không chia hết cho 7

Suy M không chia hết cho 7