So sánh
\(\left(\frac{1}{16}\right)^{10}va\left(\frac{1}{2}\right)^{50}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
\(\left(\frac{1}{2}\right)^{50}=\left(\left(\frac{1}{2}\right)^5\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
bạn so sánh nha :)
b,
T/c : \(99^{20}=\left(\left(99\right)^2\right)^{10}=9801^{10}\)
tiếp đây thì bạn tự làm nha có gì k hiểu ibx mk
a)
Vì 3<5
\(\Rightarrow3^{30}< 5^{30}\)
\(\Rightarrow\left(-3\right)^{30}< \left(-5\right)^{30}\)
b)
Ta có
\(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^4\right]^{10}.\left(\frac{1}{2}\right)^{10}\)
\(=\left(\frac{1}{16}\right)^{10}.\left(\frac{1}{2}\right)^{10}\)
Ta có
\(\left(\frac{1}{2}\right)^{10}< 1\)
\(\Leftrightarrow\left(\frac{1}{16}\right)^{10}.\left(\frac{1}{2}\right)^{10}< \left(\frac{1}{16}\right)^{10}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{16}\right)^{10}\)
Bài 1 và Bài 2 dễ, bn có thể tự làm được!
Bài 3:
a) ta có: 1020 = (102)10 = 10010
=> 10010>910
=> 1020>910
b) ta có: (-5)30 = 530 =( 53)10 = 12510 ( vì là lũy thừa bậc chẵn)
(-3)50 = 350 = (35)10= 24310
=> 12510 < 24310
=> (-5)30 < (-3)50
c) ta có: 648 = (26)8= 248
1612 = ( 24)12 = 248
=> 648 = 1612
d) ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
\(\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Vì\(\left(\frac{1}{16}\right)^{10}\)= \(\left[\left(\frac{1}{2}\right)^4\right]^{10}\)= \(\left(\frac{1}{2}\right)^{40}\)
Mà 40<50 =>\(\left(\frac{1}{2}\right)^{40}\)< \(\left(\frac{1}{2}\right)^{50}\)hay \(\left(\frac{1}{16}\right)^{10}\)< \(\left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}\)<\(\left(\frac{1}{2}\right)^{50}\)
Học giỏi!^^ (đúng thì k cho mik nhé,cảm ơn!)
\(\left(\frac{1}{2}\right)^{50}=\left(\left(\frac{1}{2}\right)^5\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
Ta có\(\frac{1}{16}>\frac{1}{32}\)nên\(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)hay\(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
Ta có:
\(\left(\frac{1}{16}\right)^{50}=\left[\left(\frac{1}{2}\right)^4\right]^{50}=\left(\frac{1}{2}\right)^{200}=\frac{1^{200}}{2^{200}}=\frac{1}{2^{200}}\)
\(\left(\frac{1}{2}\right)^{60}=\frac{1^{60}}{2^{60}}=\frac{1}{2^{60}}\)
Vì \(2^{200}>2^{60}\Rightarrow\frac{1}{2^{200}}< \frac{1}{2^{60}}\Rightarrow\left(\frac{1}{16}\right)^{50}< \left(\frac{1}{2}\right)^{60}\)
(\(\frac{1}{2}\))50=(\(\frac{1}{2^5}\))10=(\(\frac{1}{32}\))10
Do 1/6> 1/30 nên (\(\frac{1}{6}\))10>(\(\frac{1}{2}\))50
\(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left[\frac{1^5}{2^5}\right]^{10}=\left[\frac{1}{32}\right]^{10}\)
Vì 2 phân số này có cùng tử mà 6 < 30
=> \(\frac{1}{6}>\frac{1}{30}\)
=> \(\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Bài 1: \(\left(\frac{-1}{16}\right)^{100}=\frac{1}{\left(2^4\right)^{100}}=\frac{1}{2^{400}}>\frac{1}{2^{500}}=\left(\frac{-1}{2}\right)^{500}.\)
Bài 2: \(100^{99}+1>100^{68}+1\Rightarrow\frac{1}{100^{99}+1}< \frac{1}{100^{68}+1}\Rightarrow\frac{-99}{100^{99}+1}>\frac{-99}{100^{68}+1}\)
\(\Rightarrow100+\frac{-99}{100^{99}+1}>100+\frac{-99}{100^{68}+1}\Rightarrow\frac{100^{100}+1}{100^{99}+1}>\frac{100^{69}+1}{100^{68}+1}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
Cách1:Ta có:\(\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{2}\right)^{40}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{16}\right)^{10}\)
Vậy..................
Cách 2:Ta có:\(\left(\frac{1}{16}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{50}\)
Vậy......................
\(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1^{10}}{2^{40}}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1^{50}}{2^{50}}=\frac{1}{2^{50}}\)
Do 250 > 240 => \(\frac{1}{2^{40}}>\frac{1}{2^{50}}\)
=> \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)