Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
\(A=\frac{-3}{4}.\frac{-8}{9}......\frac{-9999}{1000}\)
\(=-\frac{1.3}{2.2}.\frac{2.4}{3.3}....\frac{99.101}{100.100}\)
\(=-\frac{1.2.3...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)
\(=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< \frac{-100}{200}=\frac{-1}{2}\)
VẬY \(A< \frac{-1}{2}\)
ta có:A=\(\frac{-3}{2^2}.\frac{-8}{3^2}....\frac{-9999}{100^2}\)
A có 99 thừa số âm
=>A<0
\(=>-A=\frac{3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100.100}\)
=>\(-A=\frac{101}{100.2}=\frac{101}{200}>\frac{100}{200}=\frac{1}{2}=>-A>\frac{1}{2}=>A<-\frac{1}{2}\)
tick nhé
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
Có :
A=100100+1/10099+1
1/100.A=100100+1/100.(10099+1)
A/100=100100+1/100100+100
A/100=1-99/100100
B bạn cũng làm tương tự và sau đó bạn so sánh 99/100^100 Và 99/100^69 là Ok.
Bài 1: \(\left(\frac{-1}{16}\right)^{100}=\frac{1}{\left(2^4\right)^{100}}=\frac{1}{2^{400}}>\frac{1}{2^{500}}=\left(\frac{-1}{2}\right)^{500}.\)
Bài 2: \(100^{99}+1>100^{68}+1\Rightarrow\frac{1}{100^{99}+1}< \frac{1}{100^{68}+1}\Rightarrow\frac{-99}{100^{99}+1}>\frac{-99}{100^{68}+1}\)
\(\Rightarrow100+\frac{-99}{100^{99}+1}>100+\frac{-99}{100^{68}+1}\Rightarrow\frac{100^{100}+1}{100^{99}+1}>\frac{100^{69}+1}{100^{68}+1}\)