tìm số tự nhiên thoả mãn:
86,8<x<87,1
x= .....
bao nhiêu vậy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: \(2^p+1=\left(2^p-2\right)+3\)
Mà theo định lý Ferma nhỏ: \(2^p-2⋮p\Rightarrow3⋮p\Rightarrow p=3\)
b.
- Với \(n=3k\Rightarrow2^n+1=2^{3k}+1=8^k+1\)
Mà \(8\equiv1\left(mod7\right)\Rightarrow8^k+1\equiv2\left(mod7\right)\Rightarrow\) ko chia hết cho 7
- Với \(n=3k+1\Rightarrow2^n+1=2^{3k+1}+1=2.8^k+1\)
\(2.8^k+1\equiv3\left(mod7\right)\Rightarrow\) ko chia hết cho 7
- Với \(n=3k+2\Rightarrow2^n+1=2^{3k+2}+1=4.8^k+1\)
\(4.8^k+1\equiv5\left(mod7\right)\Rightarrow\) không chia hết cho 7
Vậy \(2^n+1\) ko chia hết cho 7 với mọi n
Lời giải:
$(3x+1)^2=169=13^2=(-13)^2$
Vì $3x+1$ là số tự nhiên với mọi $x$ tự nhiên nên $3x+1=13$
$\Rightarrow 3x=12$
$\Rightarrow x=4$
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
`@` `\text {Ans}`
`\downarrow`
`82.8^n=41984`
`=> 8^n = 41984 \div 82`
`=> 8^n = 512`
`=> 8^n = 8^3`
`=> n=3`
Vậy, `n = 3`.
\(3x-2^4=5^3\\ 3x-16=125\\ 3x=125+16=141\\ x=\dfrac{141}{3}=47\)
Theo bài ra ta có: a = 7k + 4 (k ∈ N)
=> a + 3 = 7k + 7 chia hết cho 7 a = 14k1 + 11 (k1 ∈ N)
=> a + 3 = 14k1 + 14 chia hết cho 14 a = 49k2 + 46
=> a + 3 = 49k2 + 49 chia hết cho 49
=> a + 3 ∈ BC(7,9,49)
Mà a nhỏ nhất nên a + 3 nhỏ nhất
=> a + 3 = BCNN(7,9,49) = 441
=> a = 441 - 3 = 438
Đáp án là số 87
x=86,9;87