K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Giải:

Ta biết: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\) \(\left(a;b\in N\right)\)

Theo đề bài: \(8b-9a=31\) 

\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\) 

\(\Leftrightarrow\dfrac{a-1}{8}\in N\) 

\(\Leftrightarrow\left(a-1\right)⋮8\) 

\(\Leftrightarrow a=8k+1\left(k\in N\right)\) 

Khi đó:

\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\) 

\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\) 

\(\Leftrightarrow\left\{{}\begin{matrix}11.\left(9k+5\right)< 17.\left(8k+1\right)\Leftrightarrow k>1\\29.\left(8k+1\right)< 23.\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\) 

\(\Rightarrow1< k< 4\)

\(\Rightarrow k\in\left\{2;3\right\}\) 

Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\) 

Vậy \(\left(a;b\right)=\left(17;23\right);\left(25;32\right)\)

13 tháng 2 2023

Giải:

Ta biết: 1117<��<2329 và 8�−9�=31 (�;�∈�)

Theo đề bài: 8�−9�=31 

⇒�=31+9�8=32−1+8�+�8=[(4+�)+�−18]∈� 

⇔�−18∈� 

⇔(�−1)⋮8 

⇔�=8�+1(�∈�) 

Khi đó:

�=31+9.(8�+1)8=9�+5 

⇒1117<8�+19�+5<2329 

⇔{11.(9�+5)<17.(8�+1)⇔�>129.(8�+1)<23.(9�+5)⇔�<4 

⇒1<�<4

⇒�∈{2;3} 

Với [�=2⇒{�=17�=23�=3⇒{�=25�=32 

Vậy (�;�)=(17;23);(25;32)

28 tháng 3 2018

mk nghĩ là 3^2017=2^2018

đây là ý kiến riêng của mk 

k cho mk nha!!!

28 tháng 8 2016

dsads

29 tháng 9 2018

a=1

b=20

30 tháng 8 2018

giúp mình đi

thanks nhiều