K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 7 2023

Lời giải:

PT $\Leftrightarrow x^3+x+1-y(x^2-3)=0$

$\Leftrightarrow y=\frac{x^3+x+1}{x^2-3}$ (hiển nhiên $x^2-3\neq 0$ với mọi $x$ nguyên) 

Để $y$ nguyên thì $\frac{x^3+x+1}{x^2-3}$ nguyên 

$\Leftrightarrow x^3+x+1\vdots x^2-3$
$\Rightarrow x(x^2-3)+4x+1\vdots x^2-3$
$\Rightarrow 4x+1\vdots x^2-3$

Hiển nhiên $4x+1\neq 0$ nên $|4x+1|\geq x^2-3$
Nếu $x\geq \frac{-1}{4}$ thì $4x+1\geq x^2-3$
$\Leftrightarrow x^2-4x-4\leq 0$

$\Leftrightarrow (x-2)^2\leq 8<9$

$\Rightarrow -3< x-2< 3$

$\Rightarrow -1< x< 5$

$\Rightarrow x\in \left\{0; 1; 2; 3; 4\right\}$.

Nếu $x< \frac{-1}{4}$ thì $-4x-1\geq x^2-3$

$\Leftrightarrow x^2+4x-2\leq 0$

$\Leftrightarrow (x+2)^2-6\leq 0$

$\Leftrightarrow (x+2)^2\leq 6< 9$

$\Rightarrow -3< x+2< 3$
$\Rightarrow -5< x< 1$

$\Rightarrow x\in\left\{-4; -3; -2; -1\right\}$

Đến đây bạn thay vào tìm $y$ thôi

30 tháng 12 2018

\(2y^2+2xy+x+3y-13=0\)

\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)

\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)

\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)

Rồi bạn làm từng cặp ra nhé! 

6 tháng 3 2019

VINSCHOOL

4 tháng 5 2021

Ta có : xy - 4x - 3y = 5

=> xy - 4x - 3y + 12 = 5 + 12

=> x(y - 4) - 3(y - 4) = 17

=> (x - 3)(y - 4) = 17

Vì x;y \(\inℤ\Rightarrow x-3;y-4\inℤ\)

Khi đó ta có 17 = 1.17 = (-1).(-17)

Lập bảng xét các trường hợp 

x - 3117-1-17
y - 4171-17-1
x4202-14
y215-133

Vậy các cặp (x;y) thỏa mãn là (4;21) ; (20;5) ; (2;-13) ; (-14;3)

15 tháng 7 2020

x2 + 2y2 + 2xy + 3y - 4 = 0

<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0

<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25

<=> (2x+  2y)2 +  (2y + 3)2 = 25 = 0 + 52 = 32 + 42

Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}

Xét các TH xảy ra:

+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)

(Tự tính x;y)