K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

bài 2 :

   x3+7y=y3+7x

   x3-y3-7x+7x=0

   (x-y)(x2+xy+y2)-7(x-y)=0

   (x-y)(x2+xy+y2-7)=0

    \(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)

   x2+xy+y2=7 (*)

   Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)

22 tháng 1 2019

\(\Leftrightarrow y\left(3x+2\right)=7x+17-3x^2\)

Dễ thấy \(3x+2\ne0\)

\(\Leftrightarrow y=\frac{7x+17-3x^2}{3x+2}=-x+3+\frac{11}{3x+2}\)

Dể y nguyên thì \(3x+2\)phải là ước nguyên của 11

\(\Rightarrow3x+2=\left\{-11;-1;1;11\right\}\)

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

AH
Akai Haruma
Giáo viên
9 tháng 7 2023

Lời giải:

PT $\Leftrightarrow x^3+x+1-y(x^2-3)=0$

$\Leftrightarrow y=\frac{x^3+x+1}{x^2-3}$ (hiển nhiên $x^2-3\neq 0$ với mọi $x$ nguyên) 

Để $y$ nguyên thì $\frac{x^3+x+1}{x^2-3}$ nguyên 

$\Leftrightarrow x^3+x+1\vdots x^2-3$
$\Rightarrow x(x^2-3)+4x+1\vdots x^2-3$
$\Rightarrow 4x+1\vdots x^2-3$

Hiển nhiên $4x+1\neq 0$ nên $|4x+1|\geq x^2-3$
Nếu $x\geq \frac{-1}{4}$ thì $4x+1\geq x^2-3$
$\Leftrightarrow x^2-4x-4\leq 0$

$\Leftrightarrow (x-2)^2\leq 8<9$

$\Rightarrow -3< x-2< 3$

$\Rightarrow -1< x< 5$

$\Rightarrow x\in \left\{0; 1; 2; 3; 4\right\}$.

Nếu $x< \frac{-1}{4}$ thì $-4x-1\geq x^2-3$

$\Leftrightarrow x^2+4x-2\leq 0$

$\Leftrightarrow (x+2)^2-6\leq 0$

$\Leftrightarrow (x+2)^2\leq 6< 9$

$\Rightarrow -3< x+2< 3$
$\Rightarrow -5< x< 1$

$\Rightarrow x\in\left\{-4; -3; -2; -1\right\}$

Đến đây bạn thay vào tìm $y$ thôi

15 tháng 4 2017

7\(x^2\)+\(3y^2+z^2-14x+2z-18y+35=0\)

\(\Leftrightarrow\left(7x^2-14x+7\right)+\left(3y^2-18y+27\right)+\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow7\left(x-1\right)^2+3\left(y-3\right)^2+\left(z+1\right)^2=0\)

mà \(\left(x-1\right)^2\ge0\forall x\);\(\left(y-3\right)^2\ge0\forall y\);\(\left(z+1\right)^2\ge0\forall z\)\(\Rightarrow\)phương trình có nghiệm khi đồng thời x-1=0;

y-3=0;z+1=0hay x=1;y=3;z=-1