Cho A = \(\dfrac{n^9+1}{n^{10}+1}\) và B = \(\dfrac{n^8+1}{n^9+1}\) trong đó n\(\in\)N; n>1. Hãy so sánh nghịch đảo của A và B rồi so sánh A với B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)
\(=9^n\cdot80+3^n\cdot10\)
\(=10\left(9^n\cdot8+3^n\right)⋮10\)
\(A=\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{8}.\dfrac{1}{9}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{9}\)
\(=\dfrac{7}{18}\)
\(B=\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{110}\)
\(=\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{10.11}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=\dfrac{1}{4}-\dfrac{1}{11}\)
\(=\dfrac{7}{44}\)
\(\left\{{}\begin{matrix}1-\dfrac{2}{3}=\dfrac{1}{3}\\1-\dfrac{3}{4}=\dfrac{1}{4}\\1-\dfrac{4}{5}=\dfrac{1}{5}\\1-\dfrac{9}{10}=\dfrac{1}{10}\end{matrix}\right.\)
Vì:
\(\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>...>\dfrac{1}{10}\)
nên:
\(\dfrac{2}{3}< \dfrac{3}{4}< \dfrac{4}{5}< ...< \dfrac{9}{10}\)
a)
Ta có:
\(\)\(\left\{{}\begin{matrix}\dfrac{3}{4}=\dfrac{2+1}{3+1}\\\dfrac{4}{5}=\dfrac{3+1}{4+1}\\\dfrac{5}{6}=\dfrac{4+1}{5+1}\\\dfrac{9}{10}=\dfrac{8+1}{9+1}\end{matrix}\right.\)
Suy ra quy luật:
Phân số tiếp theo chính là tử của p/s ban đầu +1/mẫu của p/s ban đầu +1
Vậy phân số sau phân số \(\dfrac{a}{b}\) là \(\dfrac{a+1}{b+1}\)
So sánh :
\(\dfrac{a}{b}\) và \(\dfrac{a+1}{b+1}\)
\(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\)
\(\dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\)
Vậy cần so sánh:
\(\dfrac{ab+a}{b^2+b}\) với \(\dfrac{ab+b}{b^2+b}\)
Cần so sánh:
\(ab+a\) và \(ab+b\)
Cần so sánh \(a\) với \(b\)
Nếu \(a>b\Rightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\)
Nếu \(a< b\Rightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
Nếu \(a=b\) \(\Rightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}=1\)
Còn cách khác ngắn hơn nhưng lười làm lắm :v
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\\ S=\left(1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)\\ S=n-1-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)< n-1\)
Lại có \(\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{n^2}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)
\(\Rightarrow S>n-1-1=n-2\\ \Rightarrow n-2< S< n-1\\ \Rightarrow S\notin N\)
n lớn hơn 2 và ko chia hết cho 3 nên n tồn tại dưới 2 dạng là 3k+1 hoặc 3k+2
Nếu n có dạng 3k + 2
n^2 + 1 = ( 3k + 2 )^2 + 1 = 9k^2 + 12k + 5
n^2 - 1 = 9k^2 + 12k + 3 chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Nếu n có dạng 3k + 1
n^2 + 1= ( 3k + 1 )^2 + 1 = 9k^2 + 6k + 2
n^2 - 1= ( 3k + 1 )^2 - 1 = 9k^2 + 6k chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Vậy với n thuộc N , n > 2 và ko chia hết cho 3 thì n^2 + 1 và n^2 - 1 ko thể đồng thời là số nguyên tố
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
a) \(\dfrac{n}{3n+1}=\dfrac{2.n}{2\left(3n+1\right)}=\dfrac{2n}{6n+2}\)
Vì \(\dfrac{2n}{6n+2}< \dfrac{2n}{6n+1}\Leftrightarrow\dfrac{n}{3n+1}< \dfrac{2n}{6n+1}\)
b) Áp dụng công thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\left(a;b;m\in N\cdot\right)\)
Ta có :
\(B=\dfrac{10^8+1}{10^9+1}< 1\)
\(\Leftrightarrow B=\dfrac{10^8+1}{10^9+1}< \dfrac{10^8+1+9}{10^9+1+9}=\dfrac{10^8+10}{10^9+10}=\dfrac{10\left(10^7+1\right)}{10\left(10^8+1\right)}=\dfrac{10^7+1}{10^8+1}=A\)
\(\Leftrightarrow B< A\)
Ta có:
\(\dfrac{n}{3n+1}=\dfrac{2n}{2\left(3n+1\right)}=\dfrac{2n}{6n+2}\)
\(\dfrac{2n}{6n+2}< \dfrac{2n}{6n+1}\Rightarrow\dfrac{n}{3n+1}< \dfrac{2n}{6n+1}\)
Ta có:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^8+1}{10^9+1}< 1\)
\(\Rightarrow B< \dfrac{10^8+1+9}{10^9+1+9}\Rightarrow B< \dfrac{10^8+10}{10^9+10}\Rightarrow B< \dfrac{10\left(10^7+1\right)}{10\left(10^8+1\right)}\Rightarrow B< \dfrac{10^7+1}{10^8+1}=A\)\(\Rightarrow B< A\)
A = \(\dfrac{n^9+1}{n^{10}+1}\)
\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n - \(\dfrac{n-1}{n^9+1}\)
B = \(\dfrac{n^8+1}{n^9+1}\)
\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) = n - \(\dfrac{n-1}{n^8+1}\)
Vì n > 1 ⇒ n - 1> 0
\(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)
⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)
⇒ A < B