Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)A=10^11-1/10^12-1
=> A< (10^11-1)+11/(10^12-1)+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)=10^10+1/10^11+1<B
Vậy A<B
mình làm được câu a thôi. bạn có bấm đúng k để mình làm cho
thôi mình làm hết cho
a) xét hiệu ta có: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{ab+bn-ab-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)
với n,b, thuộc N => b(b+n) luôn >0
với n >0 => nếu b>a => b-a>0 <=> n(b-a) >0 => \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a+n}{b+n}-\frac{a}{b}>0\Leftrightarrow\frac{a+n}{b+n}>\frac{a}{b}\)
ngược lại nếu b<a => b-a<0 <=> n(b-a)<0 => \(\frac{n\left(b-a\right)}{b\left(b+n\right)}<0\Rightarrow\frac{a+n}{b+n}-\frac{a}{b}<0\Leftrightarrow\frac{a+n}{b+n}<\frac{a}{b}\)
b) \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\); \(10B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
=> 10B>10A => B>A
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
a, Nếu\(\frac{a}{b}\)< 1 \(\Rightarrow\frac{a}{b}\)< \(\frac{a+n}{b+n}\)
Nếu \(\frac{a}{b}\)=1\(\Rightarrow\frac{a}{b}\)=\(\frac{a+n}{b+n}\)
Nếu \(\frac{a}{b}\)>1\(\frac{ }{ }\Rightarrow\frac{a}{b}\)>\(\frac{a+n}{b+n}\)
b,Ta có:
A\(=\frac{10^{11}-1}{10^{12}-1}\)<1 ( Vì tử < mẫu)
\(\Rightarrow\)A=\(\frac{10^{11}-1}{10^{12}-1}\)< \(\frac{10^{11}-1+11}{10^{12}-1+11}\)\(=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}\)\(=\frac{10^{10}+1}{10^{11}+1}\)\(=\)B
Vậy A<B
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?