tìm các cặp số nguyên biết: ( x - 2 ) ( 3y +1 ) =17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\left(x-1\right)\left(y+2\right)=7\)
\(\Rightarrow\left(x-1\right)\) và \(\left(y+2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
x-1 | -7 | -1 | 1 | 7 |
y+2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Vậy \(\left(x;y\right)=\left\{\left(-6;-3\right);\left(0;-9\right);\left(2;5\right);\left(8;-1\right)\right\}\)
b) \(\left(x-2\right)\left(3y+1\right)=17\)
\(\Rightarrow\left(x-2\right)\) và \(\left(3y+1\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng giá trị:
x-2 | -17 | -1 | 1 | 17 |
3y+1 | -1 | -17 | 17 | 1 |
x | -15 | 1 | 3 | 19 |
y | \(\dfrac{-2}{3}\) (loại) | -6 (t/m) | \(\dfrac{16}{3}\) (loại) | 0 (t/m) |
Vậy \(\left(x;y\right)=\left\{\left(1;-6\right);\left(19;0\right)\right\}\)
Ko ghi lại đề nhé
a) \(TH1\left[{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
\(TH2:\left[{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\)
\(TH3:\left[{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
\(TH4:\left[{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)
b) \(TH1:\left[{}\begin{matrix}x-2=1\\3y+1=17\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\y=\dfrac{16}{3}\end{matrix}\right.=>Loại\)
\(TH2:\left[{}\begin{matrix}x-2=-1\\3y+1=-17\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-6\end{matrix}\right.Chọn\)
\(TH3:\left[{}\begin{matrix}x-2=17\\3y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=19\\y=0\end{matrix}\right.=>Chọn\)
\(TH4:\left[{}\begin{matrix}x-2=-17\\3y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-15\\y=\dfrac{-2}{3}\end{matrix}\right.=>Loại\)
Bạn tự kết luận hộ mk nha
y(x-3)+4(x-3)=29
(x-3)(y+4)=29
=>x-3;y+4 thuộc Ư(29)={1;-1;29;-29}
Lập bảng:
x-3 1 -1 -29 29
x 4 2 -26 32
y+4 29 -29 -1 1
y 25 -33 -5 -3
Vậy ...
\(2x\left(3y-2\right)+\left(3y-2\right)=-55\)
\(\left(3y-2\right)\left(2x+1\right)=-55=1.\left(-55\right)=\left(-1\right).55=\left(-5\right).11=5.\left(-11\right)\)
3y - 2 | 1 | -1 | -5 | 5 |
y | 1 | 1/3 (L) | -1 | 7/3 (L) |
2x + 1 | -55 | 55 | 11 | -11 |
x | -28 | 27 | 5 | -6 |
Vậy \(\left(y,x\right)=\left\{\left(1;-28\right),\left(-1;5\right)\right\}\)
3y2=12-\(|x-2|\)suy ra 3y2 + /x-2/ =12
Vì /x-2/ \(\ge0;\forall x\); y2\(\ge0;\forall y\)
mà x, y nguyên
TH1: y2=4 và /x-2/ = 0
suy ra y thuộc {2; -2} và x=2
TH2:
y2=1 và /x-2/ = 9
suy ra y thuộc {1; -1} và x thuộc {11; -7}
TH3:
y2=0 và /x-2/ = 12
suy ra y =0 và x thuộc {14; -10}
Tự kết luận nhé
2x(3y-2) + 3y = -53
=> 2x(3y - 2) + (3y - 2) = - 55
=> (2x +1)(3y - 2) = - 55
Ta có : - 55 = (-11).5 = (-5).11 = (-1).55 = (-55).1
Lập bảng xét 8 trường hợp
2x + 1 | 1 | -51 | -1 | 51 | 11 | -5 | -11 | 5 |
3y - 2 | -51 | 1 | 51 | -1 | -5 | 11 | 5 | - 11 |
x | 0 | -26 | -1 | 25 | 5 | -3 | -6 | 4 |
y | -49/3 | 1 | 53/3 | 1/3 | -1 | 13/3 | 7/3 | -3 |
Vậy các cặp số (x;y) nguyên thỏa mãn là : (- 26 ; 1) ; (5 ; - 1) ; (4 ; - 3)
(x-2)(3y+1)=17
=>(x-2;3y+1) thuộc {(17;1); (-1;-17)}(x,y là các số nguyên)
=>(x,y) thuộc {(19;0); (1;-6)}