Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y(x-3)+4(x-3)=29
(x-3)(y+4)=29
=>x-3;y+4 thuộc Ư(29)={1;-1;29;-29}
Lập bảng:
x-3 1 -1 -29 29
x 4 2 -26 32
y+4 29 -29 -1 1
y 25 -33 -5 -3
Vậy ...
\(xy+4x+y=3\)
\(\Leftrightarrow x\left(y+4\right)+\left(y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)\left(y+4\right)=7\)
Vì x ; y nguyên nên x + 1 nguyên , y + 4 nguyên
Ta có bảng
x + 1 | -7 | -1 | 1 | 7 |
y + 4 | -1 | -7 | 7 | 1 |
x | -8 | -2 | 0 | 6 |
y | -5 | -11 | 3 | -3 |
Vậy ,.............
\(xy+4x+y=3\)
\(\Rightarrow x\left(y+4\right)+\left(y+4\right)=3+4\)
\(\Rightarrow\left(x+1\right)\left(y+4\right)=7\)
\(\Rightarrow\left(x+1\right);\left(y+4\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có các trường hợp sau
\(TH1:\hept{\begin{cases}x+1=1\\y+4=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\) \(TH2:\hept{\begin{cases}x+1=-1\\y+4=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-11\end{cases}}}\)
\(TH3:\hept{\begin{cases}x+1=7\\y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=-3\end{cases}}}\) \(TH4:\hept{\begin{cases}x+1=-7\\y+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-5\end{cases}}}\)
Vậy\(\left(x;y\right)\in\left\{\left(0;3\right);\left(-2;-11\right);\left(6;-3\right);\left(-8;-5\right)\right\}\)
a)Ta có :\(xy-2x-3y=9\)
\(x.\left(y-2\right)\)-\(3.\left(y-2\right)\)\(-6=9\)
\(\left(x-3\right)\)\(.\left(y-2\right)\)\(=15\)
đến đây cậu tự làm tiếp nhé
x-3 ,y-2 Ư(15)=1;3;5;15
x-3 | 1 | 15 | -1 | -15 | 3 | 5 | -3 | -5 |
y-2 | 15 | 1 | -15 | -1 | 5 | 3 | -5 | -3 |
x | 4 | 18 | 2 | -12 | 6 | 8 | 0 | -2 |
y | 17 | 3 | -13 | 1 | 7 | 5 | -3 | -1 |
\(\left(x;y\right)\) \(\left(4;17\right),\left(18;3\right),\left(2;-13\right),\left(-12;1\right),\left(6;7\right),\left(8;5\right),\)\(\left(0;-3\right),\left(-2;-1\right)\)
(x-2)(3y+1)=17
=>(x-2;3y+1) thuộc {(17;1); (-1;-17)}(x,y là các số nguyên)
=>(x,y) thuộc {(19;0); (1;-6)}
Lời giải:
$2x-xy+3y=9$
$\Rightarrow x(2-y)+3y=9$
$\Rightarrow x(2-y)-3(2-y)=3$
$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:
TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm)
TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương)
TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)
TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)
Giải:
a) \(\left(x-1\right)\left(y+2\right)=7\)
\(\Rightarrow\left(x-1\right)\) và \(\left(y+2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
x-1 | -7 | -1 | 1 | 7 |
y+2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Vậy \(\left(x;y\right)=\left\{\left(-6;-3\right);\left(0;-9\right);\left(2;5\right);\left(8;-1\right)\right\}\)
b) \(\left(x-2\right)\left(3y+1\right)=17\)
\(\Rightarrow\left(x-2\right)\) và \(\left(3y+1\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng giá trị:
x-2 | -17 | -1 | 1 | 17 |
3y+1 | -1 | -17 | 17 | 1 |
x | -15 | 1 | 3 | 19 |
y | \(\dfrac{-2}{3}\) (loại) | -6 (t/m) | \(\dfrac{16}{3}\) (loại) | 0 (t/m) |
Vậy \(\left(x;y\right)=\left\{\left(1;-6\right);\left(19;0\right)\right\}\)
Ko ghi lại đề nhé
a) \(TH1\left[{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
\(TH2:\left[{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\)
\(TH3:\left[{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
\(TH4:\left[{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)
b) \(TH1:\left[{}\begin{matrix}x-2=1\\3y+1=17\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\y=\dfrac{16}{3}\end{matrix}\right.=>Loại\)
\(TH2:\left[{}\begin{matrix}x-2=-1\\3y+1=-17\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-6\end{matrix}\right.Chọn\)
\(TH3:\left[{}\begin{matrix}x-2=17\\3y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=19\\y=0\end{matrix}\right.=>Chọn\)
\(TH4:\left[{}\begin{matrix}x-2=-17\\3y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-15\\y=\dfrac{-2}{3}\end{matrix}\right.=>Loại\)
Bạn tự kết luận hộ mk nha
mk giải rồi