Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có :\(xy-2x-3y=9\)
\(x.\left(y-2\right)\)-\(3.\left(y-2\right)\)\(-6=9\)
\(\left(x-3\right)\)\(.\left(y-2\right)\)\(=15\)
đến đây cậu tự làm tiếp nhé
x-3 ,y-2 Ư(15)=1;3;5;15
x-3 | 1 | 15 | -1 | -15 | 3 | 5 | -3 | -5 |
y-2 | 15 | 1 | -15 | -1 | 5 | 3 | -5 | -3 |
x | 4 | 18 | 2 | -12 | 6 | 8 | 0 | -2 |
y | 17 | 3 | -13 | 1 | 7 | 5 | -3 | -1 |
\(\left(x;y\right)\) \(\left(4;17\right),\left(18;3\right),\left(2;-13\right),\left(-12;1\right),\left(6;7\right),\left(8;5\right),\)\(\left(0;-3\right),\left(-2;-1\right)\)
Lời giải:
$2x-xy+3y=9$
$\Rightarrow x(2-y)+3y=9$
$\Rightarrow x(2-y)-3(2-y)=3$
$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:
TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm)
TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương)
TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)
TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
a, Vì |2x+8| và |3y-9x| đều >= 0
=> |2x+8| + |3y-9x| >= 0
Dấu "=" xảy ra <=> 2x+8=0 và 3y-9x=0 <=> x=-4 và y=-12
Vậy x=-4 và y=-12
Tk mk nha
y(x-3)+4(x-3)=29
(x-3)(y+4)=29
=>x-3;y+4 thuộc Ư(29)={1;-1;29;-29}
Lập bảng:
x-3 1 -1 -29 29
x 4 2 -26 32
y+4 29 -29 -1 1
y 25 -33 -5 -3
Vậy ...