Cho A = \(^{\dfrac{n+3}{n-2}}\) (n ϵ Z;n≠2). Tìm n để A ϵ Z.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\dfrac{n+2}{n-5}\)
\(\Rightarrow A=\dfrac{n-5+7}{n-5}=\dfrac{n-5}{n-5}+\dfrac{7}{n-5}\)
\(\Rightarrow A=1+\dfrac{7}{n-5}\)
Để \(A\in Z\Leftrightarrow\dfrac{7}{n-5}\in Z\)
\(\Leftrightarrow\left(n-5\right)\inƯ\left(7\right)\)
mà \(Ư\left(7\right)=\left(\pm1;\pm7\right)\)
\(\Rightarrow n\in\left(6;4;12;-2\right)\)
\(Vậy...\)
Lời giải:
Ta có: \(A=\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\)
\(\Leftrightarrow A=\frac{2a+3a^2+a^3}{6}\)
Xét tử số:
\(a^3+3a^2+2a=a(a^2+3a+2)\)
\(=a[a(a+2)+(a+2)]\)
\(=a(a+1)(a+2)\)
Vì $a,a+1$ là hai số nguyên liên tiếp nên
\(a(a+1)\vdots 2\Rightarrow a(a+1)(a+2)\vdots 2\)
\(\Leftrightarrow a^3+3a^2+2a\vdots 2\) (1)
Mặt khác \(a,a+1,a+2\) là ba số nguyên liên tiếp nên tích của chúng chia hết cho $3$
\(\Leftrightarrow a(a+1)(a+2)\vdots 3\)
\(\Leftrightarrow a^3+3a^2+2a\vdots 3\) (2)
Từ (1)(2) kết hợp với $(2,3)$ nguyên tố cùng nhau suy ra \(a^3+3a^2+2a\vdots 6\)
\(\Rightarrow A=\frac{a^3+3a^2+2a}{6}\in\mathbb{Z}\). Ta có đpcm.
a) \(\dfrac{n+2}{3}\) là số tự nhiên khi
\(n+2⋮3\)
\(\Rightarrow n+2\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1\right\}\left(n\in Z\right)\)
b) \(\dfrac{7}{n-1}\) là số tự nhiên khi
\(7⋮n-1\)
\(\Rightarrow7n-7\left(n-1\right)⋮n-1\)
\(\Rightarrow7n-7n+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;7\right\}\Rightarrow\Rightarrow n\in\left\{2;8\right\}\left(n\in Z\right)\)
c) \(\dfrac{n+1}{n-1}\) là sô tự nhiên khi
\(n+1⋮n-1\)
\(\Rightarrow n+1-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+1-n+1⋮n-1\)
\(\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\left(n\in Z\right)\)
`A = (n+3)/(n-2)`
Ta có:
`(n+3)/(n-2)`
`=> (n+3)/(n+3-5)`
`=> -5 : n+3` hay `n+3 in Ư(-5)`
Biết: `Ư(-5)={-1;1;-5;5}`
`=> n in{-3;1;3;7}`
Ta có:
n + 3 = n - 2 + 5
Để A ∈ Z thì n - 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ n ∈ {-3; 1; 3; 7}