K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2023

a) \(\dfrac{n+2}{3}\) là số tự nhiên khi

\(n+2⋮3\)

\(\Rightarrow n+2\in\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{-1;1\right\}\left(n\in Z\right)\)

b)  \(\dfrac{7}{n-1}\) là số tự nhiên khi

\(7⋮n-1\)

\(\Rightarrow7n-7\left(n-1\right)⋮n-1\)

\(\Rightarrow7n-7n+7⋮n-1\)

\(\Rightarrow7⋮n-1\)

\(\Rightarrow n-1\in\left\{1;7\right\}\Rightarrow\Rightarrow n\in\left\{2;8\right\}\left(n\in Z\right)\)

c) \(\dfrac{n+1}{n-1}\) là sô tự nhiên khi

\(n+1⋮n-1\)

\(\Rightarrow n+1-\left(n-1\right)⋮n-1\)

\(\Rightarrow n+1-n+1⋮n-1\)

\(\Rightarrow2⋮n-1\)

\(\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\left(n\in Z\right)\)

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

27 tháng 3 2021

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:

a. $P=\frac{n-2}{n+5}=1-\frac{7}{n+5}$

Để $P$ nguyên thì $\frac{7}{n+5}$ nguyên. 

$\Rightarrow n+5$ là ước của $7$

$\Rightarrow n+5\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow n\in\left\{-4; -6; 2; -12\right\}$

b. 

Để phân số $P$ rút gọn được thì $n-2, n+5$ không nguyên tố cùng nhau. 

Gọi $ƯCLN(n-2, n+5)=d$ thì $n-2\vdots d; n+5\vdots d$

$\Rightarrow 7\vdots d$

Để $n-2, n+5$ không nguyên tố cùng nhau thì $d=7$

$\Rightarrow n-2\vdots 7$

$\Rightarrow n-2=7k$ với $k$ nguyên 

$\Rightarrow n=7k+2$ với $k$ là số nguyên bất kỳ.

2 tháng 2 2021

\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)

28 tháng 3 2023

cảm ơn nhiều ạ

 

11 tháng 2 2023

A = \(\dfrac{n+2}{n-1}=\dfrac{n-1+3}{n-1}=1+\dfrac{3}{n-1}\)

Để A là số nguyên thì \(3⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(3\right)\)

\(\Leftrightarrow n-1\in\left\{1;3;-1;-3\right\}\)

\(\Leftrightarrow n\in\left\{2;4;0;-2\right\}\)

11 tháng 2 2023

có: A=\(\dfrac{n+2}{n-1}\)=\(\dfrac{n-1+3}{n-1}\)=\(1+\dfrac{3}{n-1}\)

Để A nhận giá trị nguyên thì 3/n-1 có giá trị nguyên

=> n-1ϵƯ(3)

Ta có bảng sau:

n-1 1 3 -1 -3
n 2 4 0 -2

 

Vậy nϵ\(\left\{-2;0;2;4\right\}\)

 

2 tháng 5 2023

a) Ta có \(A=\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\). Để \(A\inℤ\) thì \(\dfrac{2}{n-3}\inℤ\) hay \(n-3\) là ước của 2. Suy ra \(n-3\in\left\{\pm1;\pm2\right\}\)

Nếu \(n-3=1\Rightarrow n=4\)\(n-3=-1\Rightarrow n=2\)\(n-3=2\Rightarrow n=5\)\(n-3=-2\Rightarrow n=1\). Vậy để \(A\inℤ\) thì \(n\in\left\{1;2;4;5\right\}\)

 \(A=\dfrac{n+4}{n+1}\) làm tương tự.

b) Dễ thấy các số ở mẫu có thể viết dưới dạng:

\(10=1+2+3+4=\dfrac{4\left(4+1\right)}{2}=\dfrac{4.5}{2}\)

\(15=1+2+3+4+5=\dfrac{5\left(5+1\right)}{2}=\dfrac{5.6}{2}\)

\(21=1+2+...+6=\dfrac{6\left(6+1\right)}{2}=\dfrac{6.7}{2}\)

...

\(120=1+2+...+15=\dfrac{15\left(15+1\right)}{2}=\dfrac{15.16}{2}\)

Do đó \(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\) 

\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)

\(A=2\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{16-15}{15.16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(A=\dfrac{3}{8}\)

 

b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)

=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)

=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101

=>1-1/(n+1)=100/101

=>1/(n+1)=1/101

=>n+1=101

=>n=100

12 tháng 7 2023

câu a đâu bn?