K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Aps dụng tích chất đường phân giác trong tam giác ABC ta có :

   \(\frac{ad}{dc}=\frac{ab}{bc}\)( T/C đường phân giác )

 Aps dụng tính chất đường phân giác trong tam giác ABH ta có :

    \(\frac{oh}{oa}=\frac{ab}{ac}\)  ( tích chất đường phân giác )

  từ hai điều trên suy ra : \(\frac{ho}{ao}=\frac{ad}{dc}\)       

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔBAC có BD là phan giác

=>AD/AB=DC/BC

=>AD/3=DC/5=8/8=1

=>AD=3cm; DC=5cm

b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>AD/HI=BA/BH

=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID

=>ΔAID cân tại A

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

b: IH/IA=BH/BA

AD/CD=BA/BC

mà BH/BA=BA/BC

nên IH/IA=AD/CD

14 tháng 5 2023

.

21 tháng 3 2023

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BD là phân giác

=>DA/AB=DC/AC

=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1

=>DA=3cm; DC=5cm

b: IH/IA=BH/BA

AD/DC=BA/BC

mà BH/BA=BA/BC

nên IH/IA=AD/DC

a: BC=10cm

Xét ΔABC có BD là phân giác

nên AD/DC=AB/BC(1)

=>AD/AB=DC/BC

=>AD/6=DC/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:AD=3cm; DC=5cm

b: Xét ΔABH có BI là phân giác

nên IH/IA=BH/BA(2)

Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔABH∼ΔCBA

Suy ra: BH/BA=BA/BC(3)

Từ (1), (2) và (3) suy ra IH/IA=AD/DC

26 tháng 2 2022

-Tham khảo:

https://hoc24.vn/cau-hoi/.4916932418792

20 tháng 12 2023

A B H C D K

Ta có

\(\dfrac{AD}{CD}=\dfrac{AB}{BC}=\dfrac{4}{8}=\dfrac{1}{2}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)

\(\Rightarrow BC=2AB\)

\(\Rightarrow\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{1}{2}\Rightarrow\widehat{ACB}=30^o\)

Ta có

\(AC=AD+CD=4+8=12\)

\(AB^2=BC^2-AC^2=4AB^2-12^2\) (Pitago)

\(\Rightarrow AB=4\sqrt{3}\Rightarrow BC=2AB=8\sqrt{3}\)

\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{48}{8\sqrt{3}}=2\sqrt{3}\)

Xét tg vuông  ABC có

\(\widehat{ABC}=90^o-\widehat{ACB}=90^o-30^o=60^o\)

Ta có

\(\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}=30^o\)

Xét tg vuông HKB và tg vuông ABC có

\(\widehat{CBD}=\widehat{ACB}=30^o\)

=> tg HKB đồng dạng với tg ABC

\(\Rightarrow\dfrac{HK}{AB}=\dfrac{BH}{AC}\Rightarrow\dfrac{HK}{4\sqrt{3}}=\dfrac{2\sqrt{3}}{12}\)

\(\Rightarrow HK=\dfrac{4\sqrt{3}.2\sqrt{3}}{12}=2\)

Xét tg vuông AHC có

\(AH=\dfrac{1}{2}AC=\dfrac{1}{2}.12=6\) (trong tg vuông cạnh đối diện với góc \(30^o\) bằng nửa cạnh huyền)

\(\Rightarrow AK=AH-HK=6-2=4\)



 

21 tháng 3 2021

A B C 6 8 H D I

a, Xét tam giác ABC vuông tại A, có AH là đường cao 

Áp dụng định lí Py ta go ta có : 

\(BC^2=AB^2+AC^2=36+64\)

\(\Rightarrow BC^2=100\Rightarrow BC=10\)cm 

Vì BD là phân giác ^ABC nên 

\(\frac{AB}{BC}=\frac{AD}{DC}\)(1) mà \(AD=AC-DC=8-DC\)

hay \(\frac{6}{10}=\frac{8-DC}{DC}\Rightarrow6DC=80-10DC\)

\(\Leftrightarrow16DC=80\Leftrightarrow DC=5\)cm 

\(\Rightarrow AD=AC-DC=8-5=3\)cm 

b, Xét tam giác BHA và tam giác BAC ta có 

^BHA = ^A = 900

^B _ chung 

Vậy tam giác BHA ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{BH}{BA}=\frac{AB}{BC}\) ( tỉ số đồng dạng ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{BH}{BA}=\frac{AD}{DC}\)(3)

xem lại đề đi nếu như thành \(\frac{IH}{AD}=\frac{IA}{DC}\)

sao lại có tam giác IHA được ? hay còn cách nào khác ko ? 

23 tháng 3 2021

cần phần c

 

24 tháng 4 2022

ai giúp mình với ạ:( ko phải làm câu a đâu ạ

 

 

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A