Cho x,y là các số thực không âm thỏa mãn x+y lớn hơn hoặc bằng 1 .
Chừng minh rằng x2y2(x2+y2) bé hơn hoặc băng 1/32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(T=\frac{1}{xy}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{xy+xz}=\frac{4}{xy+xz}\)
Từ \(x+y+z=3\Rightarrow y+z=4-x\)
\(\Rightarrow T\ge\frac{4}{xy+xz}=\frac{4}{x\left(y+z\right)}=\frac{4}{x\left(4-x\right)}=\frac{4}{-x^2+4x}\)
Lại có: \(-x^2+4x=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\le4\)
\(\Rightarrow T\ge\frac{4}{-x^2+4x}\ge\frac{4}{4}=1\)
Đẳng thức xảy ra khi \(x=2;y=z=1\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=1\).
Đáp án A.
Ta có x2 + 9y2 = 6xy <=> (x – 3y)2 = 0 <=> x = 3y.
⇒ M = 1 + log 12 x + log 12 y 2 . log 12 6 y = log 12 12 + log 12 3 y 2 log 12 36 y 2
= log 12 36 y 2 log 12 36 y 2 = 1 .
Từ \(x^2-2xy+x-2y\le0.\)
\(\Leftrightarrow\left(x-2y\right)\left(x+1\right)\le0\)(1). Do x;y là các số thực không âm nên x + 1 >0 nên từ (1) => \(0\le x\le2y\)
Với mọi \(0\le x\le2y\)thì \(x^2+3x\le\left(2y\right)^2+3\left(2y\right)=4y^2+6y\)
Do đó, \(M=x^2-5y^2+3x\le4y^2-5y^2+6y=-y^2+6y-9+9=-\left(y-3\right)^2+9\le9\forall y\)
Vậy GTLN của M là: 9 khi y = 3 và x = 2y = 6.