K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 3 2023

Có \(C_{10}^2\) cách chọn 2 nhóm bất kì (không gian mẫu)

Có 2 biến cố thuận lợi: 1,2 hoặc 3,4

Do đó xác suất là: \(P=\dfrac{2}{C_{10}^2}\)

20 tháng 3 2023

Ngồi học em nghĩ ra cái đề này anh ạ! 

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Bài học: Muốn biết chính xác kết quả, ta nên đo đạc chính xác kết hợp tính toán

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

- Kết quả 1: Chọn 2 nhóm: A và B rồi sắp xếp thứ tự “ A trình bày trước, B trình bày  sau” hoặc “ B trình bày trước, A trình bày  sau”.
- Kết quả 2: Chọn 2 nhóm: A và C rồi sắp xếp thứ tự “ A trình bày  trước, C trình bày  sau” hoặc “ C trình bày  trước, A trình bày sau”.

- Kết quả 3: Chọn 2 nhóm: A và D rồi sắp xếp thứ tự “ A trình bày trước, D trình bày sau” hoặc “ D trình bày trước, A trình bày sau”.

- Kết quả 4: Chọn 2 nhóm: B trình bày và C trình bày rồi sắp xếp thứ tự “ B trình bày trước, C trình bày sau” hoặc “ C trình bày trước, B trình bày sau”.

TRÒ CHƠI (chạy tiếp sức) Chuẩn bị :  Giáo viên chia lớp thành n nhóm, mỗi nhóm 4 em sao cho các nhóm đều có em học giỏi, học khá, học trung bình,....Mỗi nhóm tự đặt cho nhóm mình một cái tên, chẳng hạn, nhóm "Con Nhím", nhóm "Con Ốc", nhóm "Đoàn Kết",....Trong mỗi nhóm, học sinh tự đánh số từ 1 đến 4. Như vậy sẽ có n học sinh số 1, n học sinh số 2,.... Giáo viên chuẩn bị 4 đề toán về...
Đọc tiếp

TRÒ CHƠI (chạy tiếp sức)

Chuẩn bị : 

Giáo viên chia lớp thành n nhóm, mỗi nhóm 4 em sao cho các nhóm đều có em học giỏi, học khá, học trung bình,....Mỗi nhóm tự đặt cho nhóm mình một cái tên, chẳng hạn, nhóm "Con Nhím", nhóm "Con Ốc", nhóm "Đoàn Kết",....Trong mỗi nhóm, học sinh tự đánh số từ 1 đến 4. Như vậy sẽ có n học sinh số 1, n học sinh số 2,....

Giáo viên chuẩn bị 4 đề toán về giải phương trình, đánh số từ 1 đến 4. Mỗi đề toán được phôtocopy thành n bản và cho mỗi bản vào một phong bì riêng. Như vậy sẽ có n bì chứa đề toán số 1, n bì chứa đề toán số 2,....Các đề toán được chọn theo nguyên tắc sau :

Khi có hiệu lệnh, học sinh số 2 của các nhóm nhanh chóng mở đề số 1, giải rồi chuyển giá trị x tìm được cho bạn số 2 của nhóm mình. Khi nhận được giá trị x, học sinh số 2 mới được phép mở đề, thay giá trị x vào, giải phương trình để tìm y rồi chuyển đáp số cho bạn số 3 của nhóm mình. Học sinh số 3 cũng làm tương tự....Học sinh số 4 chuyển giá trị tìm được của t cho giáo viên (đồng thời là giám khảo)

Nhóm nào nộp kết quả đúng đầu tiên thì thắng cuộc.

3
22 tháng 4 2017

undefined

20 tháng 5 2017

- Học sinh 1: (đề số 1) 2(x -2) + 1 = x - 1

⇔ 2x – 4 – 1 = x -1 ⇔ x = 2

- Học sinh 2: (đề số 2) Thay x = 2 vào phương trình ta được:

(2 + 3)y = 2 + y ⇔ 5y = 2 + y ⇔ y = 1/2

- Học sinh 3: (đề số 3) Thay y = 1/2 vào phương trình ta được:

Giải bài 26 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

- Học sinh 4 (đề số 4) thay z = 2/3 vào phương trình ta được:

Giải bài 26 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy t = 2.

6 tháng 9 2023

- Tên nhóm nghề:

+ Nghề muốn chọn nhất: Cảnh sát.

+ Nghề muốn chọn nhì: Giáo viên.

+ Nghề muốn chọn 3: Hướng dẫn viên du lịch.

- Những đặc điểm của bản thân, bao gồm sở thích, khả năng, tính cách, điểm mạnh, điểm yếu.

+ Sở thích: Thích giao lưu làm những điều tốt cống hiến cho xã hội, thích đi du lịch.

+ Tính cách: Có phần hơi nóng nảy, hòa đồng.

+ Điểm mạnh: Quan tâm chăm sóc giúp đỡ mọi người xung quanh.

+ Điểm yếu: Nóng tính, đôi khi còn rụt rè.

- Đối chiếu đặc điểm của bản thân với đặc điểm của nhóm nghề để đánh giá sự phù hợp của bản thân với nhóm nghề để đánh giá sự phù hợp của bản thân với nhóm nghề định lựa chọn.

30 tháng 5 2019

12 tháng 3 2019

Đáp án B

Gọi x,y lần lượt là số học sinh nữ ở nhóm I và nhóm II. Khi đó số học sinh nam ở nhóm II là  25 − 9 + x − y = 16 − x − y   . Điều kiện để mỗi nhóm đều có học sinh nam và nữ là x ≥ 1, y ≥ 1,16 − x − y ≥ 1 ;    x , y ∈ ℕ .

Xác suất để chọn ra được hai học sinh nam bằng  C 9 1 C 16 − x − y 1 C 9 + x 1 C 16 − x 1 = 0,54

⇔ 9 16 − x − y 9 + x 16 − x = 0,54 ⇔ 144 − 9 x − 9 y 144 + 7 x − x 2 = 0,54 ⇔ y = 184 25 − 71 50 x + 3 50 x 2

Ta có hệ điều kiện sau  x ≥ 1 184 25 − 71 50 x + 3 50 x 2 ≥ 1 16 − x − 184 25 − 71 50 x + 3 50 x 2 ≥ 1 x ∈ ℕ

⇔ x ≥ 1 3 50 x 2 − 71 50 x + 159 25 ≥ 0 − 3 50 x 2 + 21 50 x + 191 25 ≥ 0 x ∈ ℕ ⇔ x ≥ 1 x ≥ 53 3 x ≤ 6 21 − 5 201 6 ≤ x ≤ 21 + 5 201 6 x ∈ ℕ ⇔ 1 ≤ x ≤ 6 x ∈ ℕ

Ta có bảng các giá trị của :

Vậy ta tìm được hai cặp nghiệm nguyên x ; y  thỏa mãn điều kiện là   1 ; 6 và  6 ; 1   .

Xác suất để chọn ra hai học sinh nữ là C x 1 C y 1 C 9 + x 1 C 16 − x 1 = x y 9 + x 16 − x .

Nếu x ; y ∈ 1 ; 6 , 6 ; 1  thì xác suất này bằng 1 25 = 0,04 .

8 tháng 3 2019

13 viên kẹo

8 tháng 3 2019

trả lời............

Có 13 viên kẹo

..................học tốt...................

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_{12}^4\)

a) Số kết quả thuận lợi cho biến cố “Bốn bạn thuộc 4 tổ khác nhau” là số cách sắp xếp 4 bạn vào 4 tổ có \(4!\) cách

Vậy xác suất của biến cố “Bốn bạn thuộc 4 tổ khác nhau” là \(P = \frac{{4!}}{{C_{12}^4}} = \frac{8}{{165}}\)

b) Gọi A là biến cố “Bốn bạn thuộc 2 tổ khác nhau”

A xảy ra với 2 trường hợp sau:

TH1: 3 bạn cùng thuộc 1 tổ và 1 bạn thuộc tổ khác có \(C_4^3.C_3^1.C_2^1 = 24\) cách

TH2: cứ 2 bạn cùng thuộc 1 tổ \(C_4^2.C_3^1.C_2^2.C_2^1 = 36\) cách

Suy ra, số kết quả thuận lợi cho biến cố A là \(n\left( A \right) = 24 + 36 = 60\)

Vậy xác suất của biến cố “Bốn bạn thuộc 2 tổ khác nhau” là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{60}}{{C_{12}^4}} = \frac{4}{{33}}\)

30 tháng 4 2018