cho phân số A=2n-1/4n-5
a)tìm các số tự nhiên n để A tối giản
b)tìm các số nguyên n để A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n+4}{n-1}=\frac{n-1+5}{n-1}=1+\frac{5}{n-1}\) vì 1 thuộc Z => để A thuộc Z thì 5 / n-1 thuộc Z
<=> n-1 thuộc Ư(5 )=> n-1 = 5 => n = 6
n-1 = -5 => n=-4
n-1 = 1 => n= 2
n -1 = -1 => n = 0
B làm tương tự tách 4n -1 = 4n + 2 -3 = 2. ( 2n+1 ) -3
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
\(\text{Ta gọi ước chung lớn nhất của 2n + 8 và n + 1 là d . (d thuộc N*)}\)
\(\hept{\begin{cases}2n+8\text{chia hết cho d}\\n+1\text{chia hết cho d}\end{cases}< =>\hept{\begin{cases}2n+8\text{chia hết cho d}\\2\left(n+1\right)\text{chia hết cho d}\end{cases}< =>}\hept{\begin{cases}2n+8\text{chia hết cho d}\\2n+2\text{chia hết cho d}\end{cases}}}\)
\(=>\left(2n+8\right)-\left(2n+2\right)\text{chia hết cho d}\)
\(=>6\text{chia hết cho d}\)
\(=>\text{ d thuộc ước của 6}\)
\(\text{Để A là số nguyên tố thì d khác 6 }\)
\(=>n\text{khác}6k+1\)\(\text{(k khác N*)}\)