Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{8n+193}{4n+3}\)
\(A=\frac{8n+6+187}{4n+3}\)
\(A=2+\frac{187}{4n+3}\)
Để A là số tự nhiên thì \(187⋮4n+3\)
\(\Rightarrow4n+3\inƯ\left(187\right)=\left\{\text{±}1;\text{±}11;\text{±}17;\text{±}187\right\}\)
mà A là số tự nhiên
\(4n+3\in\left\{1;11;17;187\right\}\)
Ta có bảng sau:
4n+3 | 1 | 11 | 17 | 187 |
4n | -2 | 8 | 14 | 184 |
n | -0,5 | 2 | 3,5 | 46 |
Vậy \(n\in\left\{-0,5;2;3,5;46\right\}\)
mà n là số tự nhiên
\(\Rightarrow n\in\left\{2;46\right\}\)
Câu b, c thì chịu. ☺
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
\(A=\frac{n+4}{n-1}=\frac{n-1+5}{n-1}=1+\frac{5}{n-1}\) vì 1 thuộc Z => để A thuộc Z thì 5 / n-1 thuộc Z
<=> n-1 thuộc Ư(5 )=> n-1 = 5 => n = 6
n-1 = -5 => n=-4
n-1 = 1 => n= 2
n -1 = -1 => n = 0
B làm tương tự tách 4n -1 = 4n + 2 -3 = 2. ( 2n+1 ) -3