K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

a.

$|2x-5|=12-3x$

Nếu $x\geq \frac{5}{2}$ thì $2x-5=12-3x$

$\Leftrightarrow x=3,4$ (thỏa mãn)

Nếu $x< \frac{5}{2}$ thì: $5-2x=12-3x$

$\Leftrightarrow x=7$ (loại)

Vậy......

b.

$4x=|x+1|+|x+2|+|x+3|\geq 0$

$\Rightarrow x\geq 0$

Do đó: $|x+1|+|x+2|+|x+3|=(x+1)+(x+2)+(x+3)=3x+6$

Vậy: $3x+6=4x$

$\Leftrightarrow x=6$ (thỏa mãn)

c.

$|x^2+|x+2||=x^2+3$

$\Leftrightarrow x^2+|x+2|=x^2+3$
$\Leftrightarrow |x+2|=3$

$\Leftrightarrow x+2=3$ hoặc $x+2=-3$

$\Leftrightarrow x=1$ hoặc $x=-5$

d.

$|x^2-3|=6$

$\Leftrightarrow x^2-3=6$ hoặc $x^2-3=-6$

$\Leftrightarrow x^2=9$ (chọn) hoặc $x^2=-3< 0$ (loại)

$\Leftrightarrow x=\pm 3$

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

10 tháng 2 2019

a) x = 8 3 .                            b) x = − 9 20 .  

7 tháng 7 2023

a) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=\left(x^2+3x+1\right)^2+x\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=\left(x^2+3x+1\right)^2+x\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)=t^2+x\) (với \(t=x^2+3x+1\))

\(\Leftrightarrow t^2-1=t^2+x\)

\(\Leftrightarrow x=-1\).

b) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)=\left(x^2+8x+11\right)^2+2x\)

\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)=\left(x^2+8x+11\right)^2+2x\)

\(\Leftrightarrow\left(t-4\right)\left(t+4\right)=t^2+2x\) (với \(t=x^2+8x+11\))

\(\Leftrightarrow t^2-16=t^2+2x\)

\(\Leftrightarrow x=-8\)

c) \(\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x+1\right)=63\)

\(\Leftrightarrow\left(x^3-1\right)\left(x^3+1\right)=63\)

\(\Leftrightarrow x^6-1=63\)

\(\Leftrightarrow x^6=64\)

\(\Leftrightarrow x=\pm2\)

7 tháng 7 2023

https://onlinemath.vn/cau-hoi/viet-1-doan-van-tong-phan-hop-khoang-12-cau-phan-tich-kho-tho-thu-2-bai-que-huong-trong-do-su-dung-1-cau-cam-than-vs-cau-ghep-chi-ro.8109170456376 help

 

24 tháng 6 2019

a) Rút gọn VT = 45x + 8. Từ đó tìm được x = 2 15 .  

b) Rút gọn VT = -25x – 8. Từ đó tìm được x = − 11 25 .

10 tháng 7 2021

Ta có: \(\hept{\begin{cases}x_1-x_2=5\\x_1^3-x_2^3=35\end{cases}}\)

<=> \(\hept{\begin{cases}x_1-x_2=5\\\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)=35\end{cases}}\)

<=> \(\hept{\begin{cases}x_1-x_2=5\\5^3+3x_1x_2.5=35\end{cases}}\)

<=> \(\hept{\begin{cases}x_1-x_2=5\\x_1x_2=-6\end{cases}}\)

<=> \(\hept{\begin{cases}x_1=5+x_2\\\left(5+x_2\right)x_2=-6\end{cases}}\)

<=> \(\hept{\begin{cases}x_1=5+x_2\\x_2^2+5x_2+6=0\end{cases}}\)

<=> \(\hept{\begin{cases}x_1=5+x_2\\\left(x_2+3\right)\left(x_2+2\right)=0\end{cases}}\)

<=> \(\hept{\begin{cases}x_1=5+x_2\\x_2+3=0\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=5+x_2\\x_2+2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x_1=5-3=2\\x_2=-3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=5-2=3\\x_2=-2\end{cases}}\)

<=> \(\hept{\begin{cases}x_1+x_2=2-3=-1\\x_1x_2=-6\end{cases}}\) hoặc \(\hept{\begin{cases}x_1+x_2=3-2=1\\x_1x_2=-6\end{cases}}\)

Nếu x1, x2 là nghiệm của pt tm \(\hept{\begin{cases}x_1+x_2=-1\\x_1x_2=-6\end{cases}}\)là nghiệm của pt x2 + x - 6 = 0 = > a = 1; b = -6

Nếu x1, x2 là nghiệm của pt tm \(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=-6\end{cases}}\) là nghiệm của pt x2 - x - 6 = 0 => a = -1 , b = -6

DD
10 tháng 7 2021

\(x_1^3-x_2^3=\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)\)

\(\Leftrightarrow35=5^3+3x_1x_2.5\Leftrightarrow x_1x_2=-6\)

\(x_1-x_2=5\Leftrightarrow x_1=5+x_2\)

suy ra \(\left(5+x_2\right)x_2=-6\Leftrightarrow\orbr{\begin{cases}x_2=-2\Rightarrow x_1=3\\x_2=-3\Rightarrow x_1=2\end{cases}}\)

Với \(x_1=3,x_2=-2\Rightarrow x_1+x_2=1\)

thì \(x_1,x_2\)là hai nghiệm của phương trình: \(x^2-x-6=0\).

Với \(x_1=2,x_2=-3\Rightarrow x_1+x_2=-1\)

thì \(x_1,x_2\)là hai nghiệm của phương trình: \(x^2+x-6=0\).

16 tháng 6 2021

1) A = \(\dfrac{2x-1}{x+3}\) = \(\dfrac{3}{2}\) (=) (2x-1).2 = 3.(x+3)

                          (=) 4x-2 =3x+9

                          (=) 4x-3x = 9+2

                         (=) x = 11 (tm)

2) Để \(\dfrac{A}{B}\)\(^{x^2}\)+5 (=) \(\dfrac{2x-1}{x+3}\)\(\dfrac{2}{x^2-9}\) <  \(x^2\)+5 

                    (=) \(\dfrac{\left(2x-1\right)}{\left(x+3\right)}.\dfrac{\left(x-3\right)\left(x+3\right)}{2}\) \(x^2\)+5

                    (=) \(\dfrac{\left(2x-1\right).\left(x-3\right)}{2}< x^2+5\)

                    (=) \(\dfrac{2x^2-6x-x+3}{2}\) < \(x^2\) +5

                    (=) \(2x^2\)- 7x + 3 < \(2x^2\)+ 10

                    (=)  (\(2x^2\)-\(2x^2\)) - 7x < -3 +10

                    (=) -7x < 7 

                    (=) x > -1

                   

A=3(x^2+2/3x-1)

=3(x^2+2*x*1/3+1/9-10/9)

=3(x+1/3)^2-10/3>=-10/3

Dấu = xảy ra khi x=-1/3

\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)

Dấu = xảy ra khi x=-1/2

2 tháng 6 2023

thử hỏi dạng toán lớp 8 cho lớp 6 ai ngờ làm đc ;-;;

27 tháng 8 2021

`a) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3`
`<=>x(x^2-25)-(x^3-8)=3`
`<=>x^3-25x-x^3+8=3`
`<=>-25x=-5`
`<=>x=1/5`
`b) (x – 3)^3 – (x – 3)(x^2 + 3x + 9) + 9(x + 1)^2 = 15`
`<=>x^3-9x^2+27x-27-(x^3-27)+9(x^2+2x+1)=15`
`<=>-9x^2+27x+9x^2+18x+9=15`
`<=>45x+9=15`
`<=>45x=6`
`<=>x=6/45=2/15`

27 tháng 8 2021


`c) (x+5)(x^2 –5x +25) – (x – 7) = x^3`
`<=>x^3-125-x+7=x^3`
`<=>x^3-x-118=x^3`
`<=>-x-118=0`
`<=>-x=118<=>x=-118`
`d) (x+2)(x^2 – 2x + 4) – x(x^2 + 2) = 4 `
`<=>x^3+8-x^3-2x=4`
`<=>8-2x=4`
`<=>2x=4<=>x=2`