Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 17.Cho phân thức: A=2x-1/x^2-x
a. Tìm điều kiện để giá trị của phân thức được xác định.
x^2 - x # 0
<=> x ( x - 1 ) # 0
<=> x # 0
<=> x -1 # 0 => x # 1
b. Tính giá trị của phân thức khi x = 0 và khi x = 3.
Nếu x = 0 thì phân thức ko xác định
Nếu x = 3 thì
2.3 - 1 / 3^2 - 3
= 5/6
Bài 13:
1: \(A=-x^2+4x+3\)
\(=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\)
Dấu '=' xảy ra khi x=2
2: \(B=-\left(x^2-6x+11\right)\)
\(=-\left(x-3\right)^2-2\le-2\)
Dấu '=' xảy ra khi x=3
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
1) A = \(\dfrac{2x-1}{x+3}\) = \(\dfrac{3}{2}\) (=) (2x-1).2 = 3.(x+3)
(=) 4x-2 =3x+9
(=) 4x-3x = 9+2
(=) x = 11 (tm)
2) Để \(\dfrac{A}{B}\)< \(^{x^2}\)+5 (=) \(\dfrac{2x-1}{x+3}\): \(\dfrac{2}{x^2-9}\) < \(x^2\)+5
(=) \(\dfrac{\left(2x-1\right)}{\left(x+3\right)}.\dfrac{\left(x-3\right)\left(x+3\right)}{2}\) < \(x^2\)+5
(=) \(\dfrac{\left(2x-1\right).\left(x-3\right)}{2}< x^2+5\)
(=) \(\dfrac{2x^2-6x-x+3}{2}\) < \(x^2\) +5
(=) \(2x^2\)- 7x + 3 < \(2x^2\)+ 10
(=) (\(2x^2\)-\(2x^2\)) - 7x < -3 +10
(=) -7x < 7
(=) x > -1