tim A=\(\frac{1\cdot3}{2^2}\)\(\cdot\frac{2\cdot4}{3^2}\cdot.......\cdot\frac{19\cdot21}{20^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/1x2 +1/2x3 +... +1/18x19 + 1/19x20
Nhận xét 1/1x2 = 1/1 -1/2 ; 1/2x3=1/2-1/3; ... ;1/18x19=1/18-1/19 ; 1/19x20=1/19-1/20
ta có A=1/1 - 1/2 + +1/2 -1/3+1/3- +1/18-1/19+1/19-1/20
A=1/1 - 1/20
A=20/20 - 1/20
A=(20-1)/20
A=19/20
Vậy A=19/20
A =\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+ ...+\(\frac{1}{18.19}\)+\(\frac{1}{19.20}\)
A = 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)- \(\frac{1}{4}\)+....+\(\frac{1}{18}\)- \(\frac{1}{19}\)+ \(\frac{1}{19}\)- \(\frac{1}{20}\)
A = 1 - \(\frac{1}{20}\)( Vì đã triệt tiêu )
A = \(\frac{19}{20}\)
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}=\frac{1^2.2^2.3^2...9^2}{1.2.2.3.3.4.4...9.10}=\frac{1.2^2.3^2...9^2}{1.2^2.3^2.4^2...10^2}=\frac{1}{10^2}=\frac{1}{100}\)
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{50^2}{49.51}=\frac{\left(1.2.3.4...50\right)^2}{1.2.3.4...50.51}=\frac{1.2.3...50}{51}=\frac{50!}{51}\)
\(\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{50^2}{49\cdot51}\)
\(=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\frac{5^2}{4\cdot6}\cdot\frac{7^2}{5\cdot7}\cdot\cdot\cdot\frac{50^2}{49\cdot51}\)
\(=\frac{2}{1}\cdot\frac{50}{51}=\frac{100}{51}\)
\(N=\frac{-1^2}{1.2}.\frac{-2^2}{2.3}.\frac{-3^2}{3.4}....\frac{-100^2}{100.101}.\frac{-101^2}{101.102}\)
\(=\frac{1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}....\frac{100.100}{100.101}.\frac{101.101}{101.102}\)
\(=\frac{1.2.2.3.3....100.100.101.101}{1.2.2.3.3.4....100.101.101.102}\)
\(=\frac{1}{102}\)
\(B=\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{2015.2015}{2014.2016}\)
\(B=\frac{2.3...2015}{1.2...2014}.\frac{2.3...2015}{3.4...2016}\)
\(B=2015.\frac{1}{1008}\)
\(B=\frac{2015}{1008}\)
\(\frac{2^2}{1.3}\times\frac{3^2}{2.4}\times............................\times\frac{50^2}{49.50}\)
\(=\frac{2.2}{1.3}\times\frac{3.3}{2.4}\times....................\times\frac{50.50}{49.50}\)
\(=\frac{\left(2.3.4..............50\right)\left(2.3.4............50\right)}{\left(1.2.3.............49\right)\left(3.4.5...........50\right)}\)
\(=\frac{50}{49}.2\)
\(=\frac{100}{49}\)
hình như =21/40 đó bạn