I. Có 8 học sinh xếp 8 chỗ ngồi trên một bàn dài. Bạn Quân muốn ngồi cạnh bạn Lâm. Tính xác suất sao cho 2 bạn ấy ngồi cạnh nhau.
II. Có 12 bóng đèn, trong đó có 8 bóng đèn tốt, lấy ngẫu nhiên 3 bóng đèn. Tính xác suất để lấy được ít nhất 1 bóng đèn tốt.
A. \(\dfrac{42}{55}\) B. \(\dfrac{54}{55}\) C. \(\dfrac{1}{55}\) D. \(\dfrac{8}{55}\)
III. Trên mặt phẳng cho bốn điểm phân biệt ABCD, trong đó không có bất kì ba điểm nào thẳng hàng. Từ các điểm đã cho, có thể lập được bao nhiêu hình tam giác?
A. 10 hình tam giác B. 6 hình tam giác
C. 12 hình tam giác D. 4 hình tam giác
IV. Trong mặt phẳng tọa độ Oxy, cho điểm E(-3; 5) và véc-tơ \(\overrightarrow{v}\) = (1; -2). Phép tịnh tiến theo véc-tơ \(\overrightarrow{v}\) biến điểm E thành điểm nào?
V. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Có bao nhiêu cạnh của hình chóp chéo nhau với canh AB?
A. 4 B. 1 C. 3 D. 2
Giải giúp mình nhé. Cảm ơn các bạn.
1.
Không gian mẫu: \(8!\)
Xếp Quân Lâm cạnh nhau: \(2!\) cách
Coi cặp Quân-Lâm như 1 bạn, hoán vị với 6 bạn còn lại: \(7!\) cách
\(\Rightarrow2!.7!\) cách xếp thỏa mãn
Xác suất: \(P=\dfrac{2!.7!}{8!}=\dfrac{1}{4}\)
2.
Không gian mẫu: \(C_{12}^3\)
Lấy 3 bóng sao cho ko có bóng tốt nào (cả 3 đều là bóng ko tốt): \(C_4^3\) cách
\(\Rightarrow C_{12}^3-C_4^3\) cách lấy 3 bóng sao cho có ít nhất 1 bóng tốt
Xác suất: \(P=\dfrac{C_{12}^3-C_4^3}{C_{12}^3}=...\)
3.
Số tam giác bằng với số cách chọn 3 điểm từ 4 điểm nên có: \(C_4^3=...\) tam giác
4.
\(T_{\overrightarrow{v}}\left(E\right)=F\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x=-3+1=-2\\y=5-2=3\end{matrix}\right.\) \(\Rightarrow\left(-2;3\right)\)
5.
Có 2 cạnh chéo nhau với AB là SC, SD