Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Kí hiệu Nam: l và Nữ: ¡. Ta có
Có 2 trường hợp Nam, nữ ken kẽ nhau và 4 trường hợp hai bạn Nữ ngồi cạnh nhau.
Trường hợp 1. Nam nữ ngồi xen kẽ nhau gồm:
Nam phía trước: l¡l¡l¡l¡l¡.
Nữ phía trước: ¡l¡l¡l¡l¡l.
Trường hợp 2. Hai bạn nữ ngồi cạnh nhau: l¡¡l¡l¡l¡l Hoặc
l¡l¡¡l¡l¡l. Tương tự ta có thêm 2 trường hợp nữa. Các bước xếp như sau:
B1: Xếp 5 bạn nam. B2: Xếp cặp Tự - Trọng. B3: Xếp các bạn nữ còn lại. Khi đó số kết quả xếp cho 2 trường hợp trên như sau:
Số cách xếp ngẫu nhiên 12 học sinh thành hàng ngang là 12! cách.
Ta tìm số cách xếp thoả mãn:
Xếp hai bạn An và Bình cạnh nhau có 2! cách, gọi nhóm này là X;
Xếp 4 bạn lớp C còn lại cùng với X có 5! cách;
Lúc này có 4 vị trí (xen giữa các bạn lớp C còn lại và X) để xếp 3 bạn lớp B vào có A34A43cách;
Còn lại 3 vị trí để các bạn lớp A có thể xếp vào (1 vị trí xen giữa và ở hai đầu) có 3.3.3 cách.
Vậy có tất cả 2 ! 5 ! A 4 3 27 cách xếp thoả mãn.
Xác suất cần tính bằng 2 ! 5 ! A 4 3 27 12 ! = 1 3080
Chọn đáp án D.
Chọn B.
Phương pháp: Sử dụng hoán vị và quy tắc nhân.
Cách giải: Xếp 12 học sinh vào 12 ghế có 12! cách xếp.
Đánh số ghế như sau:
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
Chọn giới tính nam hoặc nữ có 2 cách.
Xếp nam hoặc nữ ngồi vào các ghế 1, 3, 5, 8, 10,12 có 6!= 720 cách.
Xếp các bạn giới tính còn lại vào 6 ghế còn lại có 6!= 720cách.
Chọn B.
Kí hiệu học sinh lớp 12A, 12B, 12C lần lượt là A, B, C.
Số phần tử không gian mẫu là n(Ω)=9!
Gọi E là biến cố các học sinh cùng lớp luôn ngồi cạnh nhau. Ta có các bước sắp xếp như sau:
- Xếp 5 học sinh lớp 12C ngồi vào bàn sao cho các học sinh này ngồi sát nhau. Số cách sắp xếp là 5!
- Xếp 3 học sinh lớp 12B vào bàn sao cho các học sinh này ngồi sát nhau và sát nhóm của học sinh 12C. Số cách sắp xếp là 3!.2
- Xếp 2 học sinh lớp 12A vào hai vị trí còn lại của bàn. Số cách sắp xếp là 2!
Số phần tử thuận lợi cho biến cố E là n(E)=5!.3!.2.2!
Xác suất của A là P ( E ) = n ( E ) n ( Ω ) = 1 126
Tìm số cách xếp ngẫu nhiên:
Chọn ra 6 trong 12 học sinh rồi xếp vào bàn dài có cách xếp;
6 học sinh còn lại xếp vào bàn tròn có (6-1)!=5! cách xếp.
Vậy có tất cả cách xếp ngẫu nhiên.
Ta tìm số cách xếp mà A, B cùng ngồi 1 bàn và ngồi cạnh nhau:
TH1: A, B ngồi cùng bàn dài và cạnh nhau có cách;
TH2: A, B ngồi cùng bàn tròn và cạnh nhau có cách.
Vậy có tất cả cách xếp thoả mãn.
Xác suất cần tính bằng
Chọn đáp án B.
*Chú ý số cách xếp n học sinh vào 1 bàn tròn bằng (n−1)! cách.
Chọn đáp án B.