Rút gọn biểu thức sau
a) (a+b)^2-(a-b)^2
b)(a+b)^3-(a-b)^3-2ab^3
c)(x+y+z)^2-2(x+y+z)(x+y)(x+y)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x+y+z)2 - 2(x+y+z)(x+y)+(x+y)2
=[(x+y+z)-(x-y)]2
=(x+y+z-x-y)2
=z2
b) (a+b)3 - (a - b)3 - 2b3
=[(a+b)-(a-b)][(a+b)2+(a+b)(a-b)+(a-b)2]-2b3
=(a+b-a+b)(a2+2ab+b2+a2-b2+a2-2ab+b2)-2b3
=2b(3a2+b2)-2b3
=6a2b+2b3-2b3
=6a2b
c) (a + b)2 - (a - b)2=[a+b+(a-b)][a+b-(a-b)]=(a+b+a-b)(a+b-a+b)
=2a.2b=4ab
a) Ta có: (a+b)2 - (a-b)2
= (a+b+a-b)(a+b-a+b)
= 2a.2b
= 4ab
b) Ta có: (a+b)3 - (a-b)3 - 2b3
= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3 - 2b3
= 6a2b
c) Ta có: (x+y+z)2 - 2(x+y+z)(x+y) + (x+y)2
= (x+y+z-x-y)2
= z2
Bài 1:
a, ( a+ b + a - b)(a + b - a + b )
= 2a . 2b
= 4ab
c, = (x + y + z - x - y )2 = z2
a/ \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
Thay x = 2 vào A được:
\(=-3.2^2+7.2-4=-2\)
Vậy: Giá trị của A khi x = 2 là -2
==========
b/ \(B=126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)
\(=126y^3+x^3-125y^3\)
Thay x = -5 và y = -3 vào B được:
\(126.\left(-3\right)^3+\left(-5\right)^3-125.\left(-3\right)^3=-152\)
Vậy: Giá trị của B tại x = -5 và y = -3 là -152
==========
c/ \(C=a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^3\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
Thay a = -4 và b = 4 vào C được:
\(2.4^3+3.\left(-4\right)^2.4-3.\left(-4\right).4^2=512\)
Vậy: Giá trị của C tại a = -4 vào b = 4 là 512
a:Ta có: \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot2^2+7\cdot2-4\)
\(=-12-4+14=-2\)
c: Ta có: \(C=a^3+b^3-\left(a-b\right)\left(a^2-2ab+b^2\right)\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
\(=2\cdot4^3+3\cdot\left(-4\right)^2\cdot4-3\cdot\left(-4\right)\cdot4^2\)
\(=128+192+192=512\)
Bài 1:
a) \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b+\left(a-b\right)\right).\left(a+b-\left(a-b\right)\right)\)
\(=2a.2b\)
\(=4ab\)
Câu 1:
a) (a +b )2 - ( a -b )2
=a2+b2-a2+b2
=2b2
b) (a + b )3- ( a - b )3 - 2b3
=a3+b3-a+b3-2b3
=a3-a
c) ( x+y+z)2 - 2(x+y+z)(x+y) + (x + y )2
=x2+xy+xz+xy+y2+yz+xz+yz+z2-2.(x2+xy+xz+xy+y2+yz)+x2+xy+xy+y2
=x2+y2+z2+2xy+2xz+2yz-2x2-2y2-4xy-2xz-2yz+x2+2xy+y2
=0
Em làm thử nếu sai thì thôi ạ (vì mới học lớp 6)
a)
Ta có:
\(\left(a+b\right)^2-\left(a-b\right)^2=a^2.b^2-a^2:b^2\)
\(=a^2.b^2-a^2.\frac{1}{b^2}=a^2.\left(b^2-\frac{1}{b^2}\right)\)
Chắc thế ạ, em chỉ làm 1 phần vì sợ sai
a)(a+b)2-(a-b)2=(a+b+a-b)(a+b-a+b)=2a.2b=4ab
b)(a+b)3-(a-b)3-2ab3
=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]-2ab3
=2a(a2+2ab+b2+a2-b2+a2-2ab+b2)-2ab3
=2a(3a2+b2)-2ab3
=6a3+2ab2-2ab3
c)(x+y+z)2-2(x+y+z)(x+y)+(x+y)2
=(x+y+z-x-y)2=z2