K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2016

Ta có :a+b=c+d

\(\Rightarrow\) a=c+d-b  

Thay vào ab+1=cd  

\(\Rightarrow\) (c+d-b)*b+1=cd  

\(\Leftrightarrow\)cb+db-cd+1-b2=0  

\(\Leftrightarrow\) b(c-b)-d(c-b)+1=0  

\(\Leftrightarrow\) (b-d)(c-b)=-1  

Ta lại có :a,b,c,d,nguyên nên (b-d) và (c-b) nguyên  

Mà (b-d)(c-b)=-1 nên có 2 trường hợp  

TH1: b-d=-1 và c-b=1  

\(\Leftrightarrow\) d=b+1 và c=b+1  

\(\Rightarrow\) c=d  (1)

TH2: b-d=1 và c-b=-1  

\(\Leftrightarrow\) d=b-1 và c=b-1  

\(\Rightarrow\) c=d   (2)

Vậy từ (1) và (2) ta có c=d.

2 tháng 10 2016

Ta có: a+b=c+d

\(\Leftrightarrow a=c+d-b\)

Thay vào : ab+1=cd, ta được:

\(\left(c+d-b\right)b+1=cd\)

\(\Leftrightarrow bc+bd-b^2+1-cd=0\)

\(\Leftrightarrow\left(bc-b^2\right)+\left(bd-cd\right)=-1\)

\(\Leftrightarrow-b\left(b-c\right)+d\left(b-c\right)=-1\)

\(\Leftrightarrow\left(b-c\right)\left(d-b\right)=-1\)

Vì b,c,d là số nguyên nên suy ra: b-c=b-d=1 hoặc b-c=b-d=-1

Vậy: c=d

12 tháng 3 2020

 a+b=c+d => a=c+d-b 

thay vào ab+1=cd 

=> (c+d-b).b+1=cd 

<=> cb+db-cd+1-b2=0 

<=> b(c-b)-d(c-b)+1=0 

<=> (b-d)(c-b)=-1 

a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 

mà (b-d)(c-b)=-1 nên có 2 TH: 

TH1: b-d=-1 và c-b=1 

<=> d=b+1 và c=b+1 

=> c=d 

TH2: b-d=1 và c-b=-1 

<=> d=b-1 và c=b-1 

=> c=d 

Vậy từ 2 TH ta có c=d

ây zà mấy ngài à

2 tháng 2 2019

                          Giải

Ta có : a + b = c + d suy ra a = c + d - b 

Thay a = c + d - b vào đẳng thức ab + 1 = cd , ta được :

\(b\left(c+d-b\right)+1=cd\)

\(\Leftrightarrow cb+bd-b^2-cd=-1\)

\(\Leftrightarrow\left(cb-b^2\right)+\left(bd-cd\right)=-1\)

\(\Leftrightarrow b\left(c-b\right)+d\left(c-b\right)=-1\)

\(\Leftrightarrow\left(b+d\right)\left(c-b\right)=-1\)

\(\Rightarrow b+d=-\left(c-b\right)\)

\(\Rightarrow b+d=-c+b\)

\(\Rightarrow c=d\left(đpcm\right)\)