Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng liên tiếp BĐT quen thuộc \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) ta được :
\(\left(a^2+b^2\right)+\left(c^2+d^2\right)\) \(\ge\frac{\left(a+b\right)^2}{2}+\frac{\left(c+d\right)^2}{2}\)
\(=\frac{\left(a+b\right)^2+\left(c+d\right)^2}{2}\ge\frac{\frac{\left(a+b+c+d\right)^2}{2}}{2}=\frac{\left(a+b+c+d\right)^2}{4}=\frac{2^2}{4}=1\)
Do đó : \(a^2+b^2+c^2+d^2\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\frac{1}{2}\)
Theo Svacxo ta có : \(LHS\ge\frac{\left(a+b+c+d\right)^2}{4}=\frac{2^2}{4}=1\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=\frac{1}{2}\)
Điều kiện đề bài ⇒(2c)2=(a+c)(b+c)⇒(2c)2=(a+c)(b+c). Gọi d=gcd(a+c,b+c)d=gcd(a+c,b+c) thì do a−b=p∈Pa−b=p∈P nên d=1d=1hoặc d=pd=p
Nếu d=1d=1 thì a+c=x2,b+c=y2a+c=x2,b+c=y2 ( xy=2cxy=2c)
⇒p=(x−y)(x+y)⇒p=(x−y)(x+y). p=2p=2 thì vô lý. pp lẻ thì dễ thấy x=p+12=a−b+12x=p+12=a−b+12 và y=a−b−12y=a−b−12
⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2 là scp
Nếu d=pd=p thì a+c=pm2,b+c=pn2a+c=pm2,b+c=pn2 ( 2c=pmn2c=pmn)
⇒(m−n)(m+n)=1→m=1,n=0⇒(m−n)(m+n)=1→m=1,n=0 (loại)
Ta có: \(a^2+b^2+c^2+d^2\ge4\sqrt[4]{\left(abcd\right)^2}=4\)(AM-GM) (abcd=1)
Lại có: \(a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\)
\(=ab+ac+bc+bd+cd+ac+ad+bd\)
\(\ge8\sqrt[8]{\left(abcd\right)^4}=8\)(AM-GM)
Từ đó:
\(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\ge4+8=12\)
=> ĐPCM. Dấu "=" xảy ra <=> a=b=c=d=1.
Ta có: a+b=c+d
\(\Leftrightarrow a=c+d-b\)
Thay vào : ab+1=cd, ta được:
\(\left(c+d-b\right)b+1=cd\)
\(\Leftrightarrow bc+bd-b^2+1-cd=0\)
\(\Leftrightarrow\left(bc-b^2\right)+\left(bd-cd\right)=-1\)
\(\Leftrightarrow-b\left(b-c\right)+d\left(b-c\right)=-1\)
\(\Leftrightarrow\left(b-c\right)\left(d-b\right)=-1\)
Vì b,c,d là số nguyên nên suy ra: b-c=b-d=1 hoặc b-c=b-d=-1
Vậy: c=d