cm phân số sau tối gian với mọi n thuộc N
\(\frac{8n^2+2}{4n^2-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ủa anh thấy nó hiển nhiên mà.
Trên tử không có ước nguyên tố là 2, dưới mẫu toàn ước nguyên tố 2 thì làm sao rút gọn được?
hả anh ko thấy đó là điều hiển nhiên mà,
anh ko thấy trên tử ko có biến ak?
lần sau nhớ để ý nhé
Gọi d=ƯCLN(4n+3;8n+2)
=>\(\left\{{}\begin{matrix}4n+3⋮d\\8n+2⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8n+6⋮d\\8n+2⋮d\end{matrix}\right.\)
=>\(8n+6-8n-2⋮d\)
=>\(4⋮d\)
mà 4n+3 lẻ
nên d=1
=>ƯCLN(4n+3;8n+2)=1
=>\(\dfrac{4n+3}{8n+2}\) là phân số tối giản
Gọi \(d=ƯC\left(4n+3;8n+2\right)\) với \(d\in N\)*
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\8n+2⋮d\end{matrix}\right.\)
\(\Rightarrow2\left(4n+3\right)-\left(8n+2\right)⋮d\)
\(\Rightarrow4⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=2\\d=4\end{matrix}\right.\)
Mặt khác do \(4n+3\) luôn lẻ, mà các số tự nhiên lẻ chỉ có các ước lẻ \(\Rightarrow d\) là số lẻ
\(\Rightarrow d=1\)
\(\Rightarrow4n+3\) và \(8n+2\) nguyên tố cùng nhau
\(\Rightarrow\dfrac{4n+3}{8n+2}\) là phân số tối giản
Gọi d là UCLN của \(3n^2+5n+1\left(and\right)8n^2+7n+1\)
\(\Rightarrow\hept{\begin{cases}3n^2+5n+1⋮d\\8n^2+7n+1⋮d\end{cases}=>8\left(3n^2+5n+1\right)-3\left(8n^2+7n+1\right)⋮d}\)
\(\Rightarrow24n^2+40n+8-24n^2-21n-3⋮d\)
\(=>19n-5⋮d\)
do 19 zà 5 là số nguyên tố =>không chia hết cho d
=>p.số tối giản
a, Gọi ƯCLN(15n+1; 30n+1) là d. Ta có:
15n+1 chia hết cho d => 2(15n+1) chia hết cho d => 30n+2 chia hết cho d
30n+1 chia hết cho d
=> 30n+2-(30n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(15n+1; 30n+1) = 1
=> \(\frac{15n+1}{30n+1}\)tối giản (Đpcm)
Các phần sau tương tự
Gọi \(d=gcd\left(8n+2;4n-1\right)\) (chẳng cần phải là \(n^2\) làm chi)
Khi đó \(d\) là ước chung của \(8n+2\) và \(8n-2\), nên sẽ là ước của \(4\).
Lưu ý \(d\) lẻ vì \(d\) là ước của \(4n-1\).
Vậy \(d=1\). Xong nhé em!
Ghi chú: \(gcd\left(a;b\right)\) là kí hiệu quốc tế biểu diễn ước chung lớn nhất của \(a\) và \(b\).