K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

a, Gọi ƯCLN(15n+1; 30n+1) là d. Ta có:

15n+1 chia hết cho d => 2(15n+1) chia hết cho d => 30n+2 chia hết cho d

30n+1 chia hết cho d

=> 30n+2-(30n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(15n+1; 30n+1) = 1

=> \(\frac{15n+1}{30n+1}\)tối giản (Đpcm)

Các phần sau tương tự

8 tháng 4 2016

a) Đặt ( 15n+1 ; 30n+1 )=d

=>15n+1 chia hết cho d =>30n+2 chia hết cho d

30n+2 chia hết cho d

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>15n+1 và 30n+1 nguyên tố cùng nhau

=>\(\frac{15n+1}{30n+1}\) tối giản

b)Đặt ( 2n+3;4n+8)=d

=>2n+3 chia hết cho d=>4n+6 chia hết cho d

4n+8 chia hết cho d

=>4n+8-4n-6 chia hết cho d

=>2 chia hết cho d

=>d= 1 hoặc 2

Mà 2n+3 là số lẻ

=>d khác 2

=>d=1

=>2n+3 và 4n+8 nguyên tố cùng nhau

=>\(\frac{2n+3}{4n+8}\) tối giản

k cho mk nhé

DD
31 tháng 8 2021

a) Đặt \(d=\left(15n+1,30n+1\right)\).

Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).

Ta có đpcm. 

b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).

Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)

Suy ra \(d=1\).

Suy ra đpcm. 

22 tháng 4 2023

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

24 tháng 8 2017

a) \(\dfrac{12n+1}{30n+2}\)

Đặt \(ƯCLN\left(12n+1;30n+2\right)=d\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy phân số \(\dfrac{12n+1}{30n+2}\) tối giản.

b) \(\dfrac{8n+5}{6n+4}\left(n\in N\right)\)

Đặt \(ƯCLN\left(8n+5;6n+4\right)=d\)

\(\Leftrightarrow\left\{{}\begin{matrix}8n+5⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}24n+15⋮d\\24n+16⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left(24n+15\right)-\left(24n+16\right)⋮d\)

\(\Leftrightarrow-1⋮d\)

\(\Leftrightarrow d=\left\{-1;1\right\}\)

Vậy phân số \(\dfrac{8n+5}{6n+4}\) tối giản với mọi \(n\in N\)

24 tháng 8 2017

a,Gọi d là UCLN(12n+1;30n+2) ta có: 12n+1 \(⋮\) d và 30n+2 \(⋮\) d \(\Leftrightarrow\) 5(12n+1) \(⋮\) d và 2(30n+2) \(⋮\) d \(\Leftrightarrow\) 60n+5\(⋮\) d và 60n+4 \(⋮\) d \(\Leftrightarrow\) (60n+5)-(60n+4) \(⋮\) d \(\Rightarrow\) 1\(⋮\) d \(\Rightarrow\) d=1 Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản b, Gọi a là UCLN(8n+5;6n+4) ta có: 8n+5\(⋮\) a và 6n+4 \(⋮\) a \(\Leftrightarrow\) 3(8n+5)\(⋮\) a và 4(6n+4)\(⋮\)a 4(6n+4)-3(8n+5)\(⋮\) a\(\Rightarrow\) 1\(⋮\)a\(\Rightarrow a=1\) \(\Rightarrow\dfrac{8n+5}{6n+4}\) là phân số tối giản

24 tháng 3 2020

a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath

28 tháng 2 2018

\(\frac{15n+1}{30n+1}\)

Gọi ƯCLN ( 15n + 1 ; 30n + 1 ) = d

Ta có :

15n +  1 \(⋮\)d ; 30n + 1 \(⋮\)d

=> 2 ( 15n + 1 ) \(⋮\)d

=> 30n + 2 \(⋮\)d

=> ( 30n + 2 ) - ( 30n + 1 ) \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\){ 1 ; - 1 }

Vậy \(\frac{15n+1}{30n+1}\)là phân số tối giản

17 tháng 3 2020

a,Gọi d là ƯCLN của tử và mẫu.Ta có

15n+1 chia hết cho d        =>30n+2 chia hết cho d

30n+1 chia hết cho d        =>30n+1 chia hết cho d

=>(30n+2)-(30n+1) chia hết cho d=1 chia hết cho d=>d=1

Vậy WCLN của phân số đó là 1(đpcm)

5 tháng 1 2018

a, \(\frac{3n}{3n+1}\) 

Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z 

\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1

\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản

Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )

b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)

Đề bài sai

Các câu c,d,e,g,h tương tự

5 tháng 1 2018

Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1 

Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1