Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=gcd\left(8n+2;4n-1\right)\) (chẳng cần phải là \(n^2\) làm chi)
Khi đó \(d\) là ước chung của \(8n+2\) và \(8n-2\), nên sẽ là ước của \(4\).
Lưu ý \(d\) lẻ vì \(d\) là ước của \(4n-1\).
Vậy \(d=1\). Xong nhé em!
Ghi chú: \(gcd\left(a;b\right)\) là kí hiệu quốc tế biểu diễn ước chung lớn nhất của \(a\) và \(b\).
Ủa anh thấy nó hiển nhiên mà.
Trên tử không có ước nguyên tố là 2, dưới mẫu toàn ước nguyên tố 2 thì làm sao rút gọn được?
hả anh ko thấy đó là điều hiển nhiên mà,
anh ko thấy trên tử ko có biến ak?
lần sau nhớ để ý nhé
Gọi d là UCLN của \(3n^2+5n+1\left(and\right)8n^2+7n+1\)
\(\Rightarrow\hept{\begin{cases}3n^2+5n+1⋮d\\8n^2+7n+1⋮d\end{cases}=>8\left(3n^2+5n+1\right)-3\left(8n^2+7n+1\right)⋮d}\)
\(\Rightarrow24n^2+40n+8-24n^2-21n-3⋮d\)
\(=>19n-5⋮d\)
do 19 zà 5 là số nguyên tố =>không chia hết cho d
=>p.số tối giản
Gọi d là ƯCLN của 2n+3 và 2n2+4n+1,\(d\in N\ne0\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\left(1\right)\\2n^2+4n+1⋮d\left(2\right)\end{cases}\Rightarrow\hept{\begin{cases}\left(2n+3\right)^2⋮d\\2\left(2n^2+4n+1\right)⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}4n^2+12n+9⋮d\\4n^2+8n+2⋮d\end{cases}}\)
\(\Rightarrow4n^2+12n+9-4n^2-8n-2⋮d\)
\(\Rightarrow4n+7⋮d\left(1\right)\)
Từ\(2n+3⋮d\)\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\left(2\right)\)
Từ (1) và (2) \(\Rightarrow4n+7-4n-6⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
Gọi d là ƯCLN của 3n+2 và 4n+3
Theo đề bài ta có:
\(\hept{\begin{cases}3n+2⋮d\\4n+3⋮d\end{cases}}=>\hept{\begin{cases}4\left(3n+2\right)⋮d\\3\left(4n+3\right)d\end{cases}}\)
\(=>4\left(3n+2\right)-3\left(4n+3\right)⋮d\)
\(=>12n+8-12n-9⋮d\)
\(=>1⋮d=>d=1\)
Vì d=1 nên \(ƯCLN\)\(\left(3n+2,4n+3\right)=1\)
Vậy \(\frac{3n+2}{4n+3}\) là phân số tối giản
k mik đi
Gọi ƯCLN \(\frac{3n+2}{4n+3}\)là d, ta có :
3n + 2 \(⋮\)d → 12n + 8 \(⋮\)d ( nhân 3n + 2 với 4 )
4n + 3 \(⋮\)d → 12n + 9 \(⋮\)d ( nhân 4n + 3 với 3 )
→ ( 12n + 9 ) - ( 12n + 8 ) \(⋮\)d
( 12 n - 12n ) + ( 9 - 8 ) \(⋮\)d
1 \(⋮\)d → d \(\in\)Ư ( 1 ) = 1. Vì các số tối giản có ước là 1 và chính nó.
Vậy ........................
phân số chưa tối giản, thay n=0, ps bằng 0, ps bằng -2