tinh nhanh:\(1+\left(-3\right)+5+\left(-7\right)+9+\left(11\right)+...+\left(-99\right)\)99)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)\left(11-\sqrt{113}\right)....\left(11-\sqrt{104}\right)\)
\(=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)....\left(11-\sqrt{121}\right)....\left(11-\sqrt{104}\right)\)
\(=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)....\left(11-11\right)....\left(11-\sqrt{104}\right)\)
\(=0\)
Do đó biểu thức trên đầu bài bằng 0
\(\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{1}{5}-\frac{1}{7}-\frac{2}{35}\right)\)
\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{7}{35}-\frac{5}{35}-\frac{2}{35}\right)\)
\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right).0\)
\(=0\)
a) \(4+7=11\)
b) \(\left( { - 4} \right)\) và \(\left( { - 7} \right)\) là hai số nguyên âm có số đối lần lượt là 4 và 7 nên \(\left( { - 4} \right) + \left( { - 7} \right) = - \left( {4 + 7} \right) = - 11\).
c) \(\left( { - 99} \right)\) có số đối là 99
\(\left( { - 11} \right)\) có số đối là 11.
Vậy \(\left( { - 99} \right) + \left( { - 11} \right) = - \left( {99 + 11} \right) = - 110\)
d) \(\left( { + 99} \right) + \left( { + 11} \right) = 99 + 11 = 110\)
e) \(\left( { - 65} \right) + \left( { - 35} \right) = - \left( {65 + 35} \right) = - 100\)
Ta có: \(63.1,2-21.3,6=0,9.7.10.1,2-21.3,6\)
\(=6,3.12-21.3,6\)
\(=0,9.7.4.3-7.3.0,9.4\)
\(=6,3.12-6,3.12\)
\(=0\)
\(\Rightarrow\frac{\left(1+2+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)0}{1-2+3-4+...+99-100}=0\)
Vậy \(\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}=0\)
\(A=\frac{\left(1+2+3+...+99+100\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63\cdot1,2-21\cdot3,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+99+100\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(75,6-75,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+99+100\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot0}{1-2+3-4+...+99-100}\)
\(=0\)
B = .................
Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0
\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)
Mình làm câu 1,2 trước, câu 3 sau
Câu 1:
\(\sqrt{x^2}=0\)
=> \(\left(\sqrt{x^2}\right)^2=0^2\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Câu 2:
\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)
\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)
Ta có: \(A=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+.....+\frac{1}{\left(x+9\right)\left(x+11\right)}\)
\(\Rightarrow A=\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+....+\frac{1}{x+9}-\frac{1}{x+11}\)
\(\Rightarrow A=\frac{1}{x+1}-\frac{1}{x+11}\)
\(\Rightarrow A=\frac{x+11-x+1}{\left(x+1\right)\left(x+11\right)}=\frac{12}{\left(x+1\right)\left(x+11\right)}\)
Tách đôi ra ÁP CÔNG THÚC TỔNG VÀO:
a=1+5+..+97
B=-3+-7+..-99=-(3+...+99)
liyuhkli
klhjlhjl