K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

\(n^2\)- n = nn - n.1 =  n . ( n - 1)

Mà n và n-1 là 2 số tự nhiên liên tiếp hay n và n-1 là một số lẻ hoặc một số chẵn

\(\Rightarrow\)  n chia hết cho 2 hoặc (n-1) chia hêt cho 2

\(\Rightarrow\) n.(n-1) chia hết cho 2 hay \(n^2\)- n chia hết cho 2

31 tháng 10 2024

n là số tự nhiên nên n có dạng: n = 3k; n = 3k +1; n = 3k +2 (k \(\in\) N)

Vơi n = 3k ta có: n(n + 1).(n + 5) = 3k(3k+1).(3k+5)⋮ 3

Nếu n = 3k + 1 ta có:

n(n+1)(n+5)=(3k + 1).(3k+ 1+1).(3k + 1+ 5) = (3k + 1)(3k+2)(3k+6) ⋮ 3

Nếu n =3k + 2 ta có: 

n(3n  +2 + 1).(3n + 2 + 5) = n(3n+3)(3n+7) ⋮ 3 

Tư những lập luận và phân tích trên ta có: n(n+1)(n+5)⋮ 3 ∀ n \(\in\) N

 

23 tháng 2 2019

Ta có : m.n( m2.n

= m.n [( m2 - 1 ) - ( n2 - 1)]

= m( m2 - 1 )n - mn( n2 - 1 )

=  ( m - 1 )m( m + 1 )n - m( n - 1 )n( n + 1 )

Ta thấy: * ( m - 1) ; m và ( m + 1) là ba số nguyên liên tiếp 

                => ( m - 1 )m( m + 1 ) chia hết cho 6

                => ( m - 1 )m ( m + 1 )n chia hết cho 6 (1)

             * ( n - 1) ; n ; ( n + 1 ) là ba số nguyên liên tiếp

                => ( n - 1)n( n + 1 ) chia hết cho 6

                => m( n - 1 )n( n + 1 ) chia hết cho 6 (2)

Từ (1) và (2) suy ra : ( m - 1)m( m + 1)n - m( n - 1)n( n + 1 ) chia hết cho 6

Vậy m.n( m2.n) chia hết cho 6 (đpcm)

Hok tốt !

23 tháng 2 2019

Em kiểm tra lại đề và có thể tham khảo 1 cách giải ( lớp 7 có thể hiểu):

Câu hỏi của Luong Ngoc Quynh Nhu - Toán lớp 8 - Học toán với OnlineMath

23 tháng 2 2019

Nhận xét: với mọi a thuộc Z

 \(a\left(a^2-1\right)=\left(a-1\right).a.\left(a+1\right)\)chia hết cho 3 và chia hết cho 2

mà (3, 2)=1

=> \(a\left(a^2-1\right)\)chia hết cho 6 (1)

Với mọi m, n thuộc Z

\(m^3n-mn^3=mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)

Từ (1) => \(m\left(m^2-1\right)⋮6,n\left(n^2-1\right)⋮6\)=> \(m^3n-mn^3⋮6\)với mọi m, n thuộc Z

Với n=1 thì 1^3+2*1=3 chia hết cho 3

Với n>1 thì Giả sử n^3+2n chia hết cho 3

Chúng ta cần chứg minh (n+1)^3+2(n+1) chia hết cho 3

\(A=\left(n+1\right)^3+2\left(n+1\right)\)

\(=n^3+3n^2+3n+1+2n+2\)

=n^3+3n^2+5n+3

=n^3+2n+3n^2+3n+3n+3

=n^3+2n+3(n^2+n+n+1) chia hết cho 3

=>ĐPCM

16 tháng 7 2015

TH1: n chia hết cho 3

=> n2 + n chia hết cho 3 

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 2

TH2: n chia 2 dư 1

=> n2 chia 3 dư 1

=> n2 + n chia 3 dư 2

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 1

TH3: n chia 3 dư 2

=> n2 chia 3 dư 1

=> n2 + n chia hết cho 3

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 2

KL: Vậy với mọi số nguyên n thì n2 + n + 2 không chia hết cho 3 (đpcm)

16 tháng 7 2015

Hồ Thu Giang ơi ! Bạn xem kĩ bài đi, sai 1 số chỗ đấy ! 

23 tháng 2 2019

Ta có : a3 - a = a( a2 - 1 ) = a( a - 1 )( a + 1 ) = ( a - 1 )a( a + 1 )

Ta thấy : a - 1 và a là hai số nguyên liên tiếp.

=> ( a + 1 )a chia hết cho 2 (1)

Lại thấy: ( a - 1) ; a và ( a + 1 ) là ba số nguyên liên tiếp.

=> ( a - 1)a( a + 1 ) chia hết cho 3 (2)

Từ (1) và (2) suy ra  ( a - 1)a( a + 1 ) chia hết cho 2 và 3

Mà ( 2;3 ) = 1

Có : 2 . 3 = 6

=> ( a - 1)a( a + 1 ) chia hết cho 6

=> a3 - a chia hết cho 6 với mọi a thuộc Z (đpcm)

Hok tốt !

20 tháng 11 2019

Với mọi số tự nhiên n.

Ta có: \(n^2+n+1=n\left(n+1\right)+1\)

Do n; n + 1 là hai số tự nhiên liên tiếp 

=> n ( n + 1) chia hết cho 2.

=> n ( n+ 1)  + 1 không chia hết chia hết cho 2

=> \(n^2+n+1\)không chia hết cho 2

=> \(n^2+n+1\) không chia hết cho 4.

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4