K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

Với mọi số tự nhiên n.

Ta có: \(n^2+n+1=n\left(n+1\right)+1\)

Do n; n + 1 là hai số tự nhiên liên tiếp 

=> n ( n + 1) chia hết cho 2.

=> n ( n+ 1)  + 1 không chia hết chia hết cho 2

=> \(n^2+n+1\)không chia hết cho 2

=> \(n^2+n+1\) không chia hết cho 4.

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

2 tháng 1 2017



n2+n+2016
=n2+n+1+2015
Ta xét ra 5 trường hợp n2 có chữ số tận cùng là: 1,4,5,6,9.
Bc cuối bạn có thể tự làm nhé.
Chúc may mắn!!!
 

2 tháng 1 2017

+) Xét n=5k

=>\(n^2+n+2016=25k^2+5k+2016=5\left(5k^2+k+403\right)+1\) không chia hết cho 5

+) Xét n=5k+1

=>\(n^2+n+2016=\left(5k+1\right)^2+5k+1+2016=25k^2+10k+1+5k+1+2016\)

\(=25k^2+15k+2018=5\left(5k^2+3k+403\right)+3\) không chia hết cho 5

+) Xét n=5k+2

=>\(n^2+n+2016=\left(5k+2\right)^2+5k+2+2016=25k^2+20k+4+5k+2+2016\)

\(=25k^2+25k+2022=5\left(5k^2+5k+404\right)+2\) không chia hết cho 5

+) Xét n=5k+3

=>\(n^2+n+2016=\left(5k+3\right)^2+5k+3+2016=25k^2+30k+9+5k+3+2016\)

\(=25k^2+35k+2028=5\left(5k^2+7k+405\right)+3\) không chia hết cho 5

+) Xét n=5k+4

=>\(n^2+n+2016=\left(5k+4\right)^2+5k+4+2016=25k^2+40k+16+5k+4+2016\)

\(=25k^2+45k+2036=5\left(5k^2+9k+407\right)+1\) không chia hết cho 5

Từ 5 trường hợp trên => đpcm

30 tháng 6 2017

  + Xét TH1: n chẵn

Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.

   + Xét TH2: n lẻ

Suy ra n + 5 chẵn

Do đó (n + 5) chia hết 2

Vậy n(n +5) chia hết cho 2.

8 tháng 11 2017

TA CÓ

+ Nếu n chia hết cho 2 thì nx(n+5) chia hết cho 2 thì bài toán đã được chứng minh

+Nếu n ko chia hết cho 2 thì n = 2k+1 suy ra n+5 =2k+5+1=2k+6

mà 2k chia hết cho 2 và 6 chia hết cho 2 nên n+5 chia hết cho 2

suy ra n(n+5) chia hết cho 2

Vậy n(n+5) luôn chia hết cho 2 (đpcm)

11 tháng 1 2018

Nếu n = 2k => n chia hết cho 2

=> n(n + 5) chia hết cho 2

Nếu n = 2k + 1 => n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2

=> n + 5 chia hết cho 2

=> n(n + 5) chia hết cho 2

Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.

n luôn chia hết cho 2

vì n + 3 x n + 12 luôn là số chẵn

n(n + 5) = n2 + 5n

+ Nếu n là lẻ thì n2 và 5n đều là lẻ. Khi đó n2 + 5n là chẵn.  n2 + 5n  2

+ Nếu n là chẵn thì n2 và 5n đều là chẵn. Khi đó n2 + 5n là chẵn.  n2 + 5n  2

 ĐPCM

12 tháng 10 2017

Ta có: \(n^2+n+6=n\left(n+1\right)+6\)

Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) không có chữ số tận cùng là 4 hoặc 9

Vì n(n+1) không có chữ số tận cùng là 4 hoặc 9 nên n(n+1) + 6 không có chữ số tận cùng là 0 hoặc 5

Mà các chữ số khác chữ số tận cùng 0 hoặc 5 thì không chia hết cho 5

Suy ra n(n+1) + 6 không chia hết cho 5

hay n^2 + n + 6 không chia hết cho 5 với mọi số tự nhiên n ( đpcm )

Nhớ k cho mình nhé! Thank you!!!

3 tháng 12 2017

Ta có: n
2
+ n + 6 = n n + 1 + 6
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) không có chữ số tận cùng là 4 hoặc 9
Vì n(n+1) không có chữ số tận cùng là 4 hoặc 9 nên n(n+1) + 6 không có chữ số tận cùng là 0 hoặc 5
Mà các chữ số khác chữ số tận cùng 0 hoặc 5 thì không chia hết cho 5
Suy ra n(n+1) + 6 không chia hết cho 5
hay n^2 + n + 6 không chia hết cho 5 với mọi số tự nhiên n ( đpcm )

chúc bn hok tốt @_@