Tìm các giá trị nguyên của số n để biểu thức sau nhận giá trị nguyên : \(P=\frac{n^3-2n+4}{n-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{6n+1}{2n+1}\left(n\in Z\right)\\ =\dfrac{3\left(2n+1\right)-2}{2n+1}=3-\dfrac{2}{2n+1}\)
Để biểu thức nhận gt nguyên thì : \(\dfrac{2}{2n+1}\in Z\)
\(=>2n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\\ =>2n\in\left\{0;-2;1;-3\right\}\\ =>n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2}\right\}\)
Do n nguyên -> Kết luận : n = 0 hoặc n = -1
Ta có \(\frac{2n+1}{2n-3}\) \(=\frac{2n-3+4}{2n-3}=1+\frac{4}{2n-3}\)
Để phân số \(\frac{2n+1}{2n-3}\) nguyên thì \(\frac{4}{2n-3}\) nguyên
=> 4 \(⋮\) 2n-3
hay 2n-3 \(\in\) Ư (4)={1;2;4;-1;-2;-4}
Ta có bảng sau
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | / | / | 1 | / | / |
Vậy n \(\in\) {2;1}
A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)
Vì\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)
+)\(n-3=1\Leftrightarrow n=4\)(TM đk)
+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)
+)\(n-3=11\Leftrightarrow n=14\)(TMđk)
+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)
Vậy x={4;2;14;-8} thì A\(\in\)Z
ĐK: \(n\ne3\)
\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)
Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)
Để A nguyên => 3-n = Ước của 5
\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)
\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)
Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)
\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)
Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)
\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(3n-4\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-\dfrac{1}{3}\) | \(1\) | \(\dfrac{5}{3}\) | \(3\) |
Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên