K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
19 tháng 8 2023

\(\dfrac{6n+1}{2n+1}\left(n\in Z\right)\\ =\dfrac{3\left(2n+1\right)-2}{2n+1}=3-\dfrac{2}{2n+1}\)

Để biểu thức nhận gt nguyên thì : \(\dfrac{2}{2n+1}\in Z\)

\(=>2n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\\ =>2n\in\left\{0;-2;1;-3\right\}\\ =>n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2}\right\}\)

Do n nguyên -> Kết luận : n = 0 hoặc n = -1

10 tháng 4 2021

 Ta có \(\frac{2n+1}{2n-3}\) \(=\frac{2n-3+4}{2n-3}=1+\frac{4}{2n-3}\)

Để phân số \(\frac{2n+1}{2n-3}\) nguyên thì \(\frac{4}{2n-3}\) nguyên 

=> 4 \(⋮\) 2n-3

hay 2n-3  \(\in\) Ư (4)={1;2;4;-1;-2;-4}

Ta có bảng sau

2n-3124-1-2-4
n2//1//

Vậy n \(\in\) {2;1}
 

4 tháng 2 2019

\(m-1⋮2m+1\)

\(\Rightarrow2m-2⋮2m+1\)

\(\Rightarrow2m+1-3⋮2m+1\)

\(\Rightarrow3⋮2m+1\)

tu lam

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot5\cdot2\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

4 tháng 2 2019

cảm ơn bạn rất nhiều 

11 tháng 3 2019

ai đó giải dùm mik đi mik chịu rùi T^T

DT
19 tháng 8 2023

\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)

Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)

\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)

Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)

19 tháng 8 2023

\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
 

\(3n-4\) \(-5\) \(-1\) \(1\) \(5\)
\(n\) \(-\dfrac{1}{3}\) \(1\) \(\dfrac{5}{3}\) \(3\)

Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên