K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

4x+5y=7

4x+5y=7 (x, y nguyen)=>y=3-4n; x=5n-2

B(n)=5I5n-2I-3I4n-3I

B(0)=5.2-3.3=1

B(1)=5.3-3.1=12 

B(-1)=5.7-3.7=14 (cho an toan, thuc ra chi can b(0)&b(1) la du)

Min(b)=1 khi x=-2, y=3

14 tháng 3 2018

-4,2 nha  

23 tháng 11 2016

Ta có 5y = 7 - 4x

Đầu tiên ta thấy rằng để thỏa bài toán thì xy < 0

Nên ta chỉ cần xét 2 trường hợp

TH 1: x > 0 > y thì

\(B=5\left|x\right|-3\left|y\right|=5x+3y\)

\(=5x+3.\frac{7-4x}{5}=\frac{13x+21}{5}\)

B đạt giá trị nhỏ nhất khi x đạt giá trị nhỏ nhất mà ta thấy x nguyên dương, y nguyên âm. Ta dễ dàng tìm được cặp (x, y) = (3, - 1)

=> B = 12

TH 2: x < 0< y thì

\(B=5\left|x\right|-3\left|y\right|=-5x-3y\)

\(=-5x-3.\frac{7-4x}{5}=\frac{-13x-21}{5}\)

B đạt GTNN khi x đạt GTLN mà x nguyên âm, y nguyên dương nên ta dễ dàng tìm được (x, y) = (- 2, 3)

Thế vào ta được B = 1

So sánh 2 trường hợp ta được GTNN của B là 1 đạt được khi  (x, y) = (- 2, 3)

23 tháng 11 2016

cảm ơn nhiều luôn,hôm nay hết lượt rồi mai chọn cho bạn :)))))

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)