Cho các số nguyên x và y thỏa mãn 4x+5y= 7. tìm giá trị nhỏ nhất của biểu thức: B=5|x| -3|y|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 5y = 7 - 4x
Đầu tiên ta thấy rằng để thỏa bài toán thì xy < 0
Nên ta chỉ cần xét 2 trường hợp
TH 1: x > 0 > y thì
\(B=5\left|x\right|-3\left|y\right|=5x+3y\)
\(=5x+3.\frac{7-4x}{5}=\frac{13x+21}{5}\)
B đạt giá trị nhỏ nhất khi x đạt giá trị nhỏ nhất mà ta thấy x nguyên dương, y nguyên âm. Ta dễ dàng tìm được cặp (x, y) = (3, - 1)
=> B = 12
TH 2: x < 0< y thì
\(B=5\left|x\right|-3\left|y\right|=-5x-3y\)
\(=-5x-3.\frac{7-4x}{5}=\frac{-13x-21}{5}\)
B đạt GTNN khi x đạt GTLN mà x nguyên âm, y nguyên dương nên ta dễ dàng tìm được (x, y) = (- 2, 3)
Thế vào ta được B = 1
So sánh 2 trường hợp ta được GTNN của B là 1 đạt được khi (x, y) = (- 2, 3)
cảm ơn nhiều luôn,hôm nay hết lượt rồi mai chọn cho bạn :)))))
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
4x+5y=7
4x+5y=7 (x, y nguyen)=>y=3-4n; x=5n-2
B(n)=5I5n-2I-3I4n-3I
B(0)=5.2-3.3=1
B(1)=5.3-3.1=12
B(-1)=5.7-3.7=14 (cho an toan, thuc ra chi can b(0)&b(1) la du)
Min(b)=1 khi x=-2, y=3