K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

4x+5y=7

4x+5y=7 (x, y nguyen)=>y=3-4n; x=5n-2

B(n)=5I5n-2I-3I4n-3I

B(0)=5.2-3.3=1

B(1)=5.3-3.1=12 

B(-1)=5.7-3.7=14 (cho an toan, thuc ra chi can b(0)&b(1) la du)

Min(b)=1 khi x=-2, y=3

14 tháng 3 2018

-4,2 nha  

23 tháng 11 2016

Ta có 5y = 7 - 4x

Đầu tiên ta thấy rằng để thỏa bài toán thì xy < 0

Nên ta chỉ cần xét 2 trường hợp

TH 1: x > 0 > y thì

\(B=5\left|x\right|-3\left|y\right|=5x+3y\)

\(=5x+3.\frac{7-4x}{5}=\frac{13x+21}{5}\)

B đạt giá trị nhỏ nhất khi x đạt giá trị nhỏ nhất mà ta thấy x nguyên dương, y nguyên âm. Ta dễ dàng tìm được cặp (x, y) = (3, - 1)

=> B = 12

TH 2: x < 0< y thì

\(B=5\left|x\right|-3\left|y\right|=-5x-3y\)

\(=-5x-3.\frac{7-4x}{5}=\frac{-13x-21}{5}\)

B đạt GTNN khi x đạt GTLN mà x nguyên âm, y nguyên dương nên ta dễ dàng tìm được (x, y) = (- 2, 3)

Thế vào ta được B = 1

So sánh 2 trường hợp ta được GTNN của B là 1 đạt được khi  (x, y) = (- 2, 3)

23 tháng 11 2016

cảm ơn nhiều luôn,hôm nay hết lượt rồi mai chọn cho bạn :)))))

AH
Akai Haruma
Giáo viên
8 tháng 5 2023

Lời giải:
Áp dụng BĐT AM-GM ta có:
$x^5+x^5+x^5+1+1\geq 5\sqrt[5]{x^{15}}=5x^3$
$y^5+y^5+y^5+1+1\geq 5\sqrt[5]{y^{15}}=5y^3$

$\Rightarrow 3(x^5+y^5)+4\geq 5(x^3+y^3)\geq 10$ (do $x^3+y^3\geq 2$)

$\Leftrightarrow x^5+y^5\geq 2$
Vậy $C_{\min}=2$. Giá trị này đạt tại $x=y=1$

NV
26 tháng 12 2020

1.

\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)

\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)

\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)

Đặt \(xy=a\Rightarrow0< a\le1\)

\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)

\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)

\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)

\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)

\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)

\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)

Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)

NV
26 tháng 12 2020

2.

Đặt \(A=9^n+62\)

Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)

Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)

\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)

Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\)  và \(6m+1\)

\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)

\(\Leftrightarrow36m^2=9^n+63\)

\(\Leftrightarrow4m^2=9^{n-1}+7\)

\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)

\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)

Pt ước số cơ bản, bạn tự giải tiếp