K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

chia hết cho6

chia hết cho 31

đúng thì k nha

20 tháng 8 2015

Gọi tổng là S

\(S=1+\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2007}+5^{2008}\right)\)

\(S=1+5.6+5^3.6+....+5^{2007}.6\)

\(S=1+6.\left(5+5^3+...+5^{2007}\right)\)

Vậy S chia 6 dư 1

\(S=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+....+\left(5^{2006}+5^{2007}+5^{2008}\right)\)

\(S=31.1+31.5^3+....+31.5^{2007}\)

\(S=31.\left(1+5^3+....+5^{2007}\right)\)

Vậy S chia hết cho 31 hay S chia 31 dư 0

Tổng có 2008 số hạng. Ta có :

1 + 5 + 52 + ... + 52008

= 1 + 5 + ( 52 + 53 + 54 ) + ( 56 + 57 + 58 ) + ... + ( 52006 + 52007 + 52008 )

= 1 + 5 + 52( 1 + 5 + 52 ) + 55( 1 + 5 + 52 ) + ... + 52006( 1 + 5 + 52 )

= 6 + 52 . 31 + 55 . 31 + ... + 52006 . 31

= 6 + 31( 52 + 55 + ... + 52006 ) chia cho 31 dư 6

#ĐinhBa 

16 tháng 5 2019

Đặt \(A=1+5+5^2+5^3+...+5^{2008}\)

A có 2009 số chia làm 1004 cặp, còn dư số 1

\(\Rightarrow A=1+\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2007}+5^{2008}\right)\)

\(\Rightarrow A=1+5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2007}\left(1+5\right)\)

\(\Rightarrow A=1+5.6+5^3.6+...+5^{2007}.6\)

\(\Rightarrow A=1+6\left(5+5^3+...+5^{2007}\right)\)

Vậy A chia 6 dư 1.

8 tháng 11 2023

S = 5⁰ + 5¹ + 5² + ... + 5²⁰²³

= (5⁰ + 5¹) + (5² + 5³) + ... + (5²⁰²² + 5²⁰²³)

= 6 + 5².(1 + 5) + ... + 5²⁰²².(1 + 5)

= 6 + 5².6 + ... + 5²⁰²².6

= 6.(1 + 5² + ... + 5²⁰²²) ⋮ 6

Vậy S ⋮ 6

--------

Số số hạng của S:

2023 - 0 + 1 = 2024 (số)

2024 : 3 dư 2 nên khi nhóm các số hạng của S theo nhóm 3 thì dư 2 số hạng

Ta có:

S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³

= 5⁰ + 5¹ + (5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷) + ... + (5²⁰²¹ + 5²⁰²² + 5²⁰²³)

= 6 + 5².(1 + 5 + 5²) + 5⁵.(1 + 5 + 5²) + ... + 5²⁰²¹.(1 + 5 + 5²)

= 6 + 5².31 + 5⁵.31 + ... + 5²⁰²¹.31

= 6 + 31.(5² + 5⁵ + ... + 5²⁰²¹)

Do 31.(5² + 5⁵ + ... + 5²⁰²¹) ⋮ 31

6 + 31.(5² + 5⁵ + ... + 5²⁰²¹) chia 31 dư 6

Vậy S chia 31 dư 6

------------

Sửa đề:

Tìm số tự nhiên n để 4S - 25² = -1

S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³

5S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰²⁴

⇒ 4S = 5S - S

= (5 + 5² + 5² + 5³ + ... + 5²⁰²⁴) - (1 + 5¹ + 5² + 5³ + ... + 5²⁰²³)

= 5²⁰²⁴ - 1

⇒ 4S - 25²ⁿ = -1

⇒ 5²⁰²⁴ - 1 - (5²)²ⁿ = -1

⇒ 5²⁰²⁴ - 5⁴ⁿ = -1 + 1

⇒ 5⁴ⁿ = 5²⁰²⁴

⇒ 4n = 2024

⇒ n = 2024 : 4

⇒ n = 506

DT
8 tháng 11 2023

\(S=\left(5^0+5^1\right)+\left(5^2+5^3\right)+...+\left(5^{2022}+5^{2023}\right)\\ =6+5^2\left(1+5\right)+...+5^{2022}\left(1+5\right)\\ =6+5^2.6+...+5^{2022}.6\\ =6\left(1+5^2+...+5^{2022}\right)⋮6\)

\(S=\left(5^0+5^1+5^2\right)+...+\left(5^{2021}+5^{2022}+5^{2023}\right)\\ =31+...+5^{2021}\left(1+5+5^2\right)\\ =31\left(1+...+5^{2021}\right)⋮31\)

=> Dư : 0

\(5S=5^1+5^2+5^3+5^4+...+5^{2024}\\ =>5S-S=4S=5^{2024}-1\)

Mà : \(4S-25^{2n}=1\\ =>5^{2024}-1-25^{2n}=1\\ =>5^{2024}-25^{2n}=2\)

Bạn xem lại đề nhé

 

20 tháng 8 2018

a) \(7.8.9.10⋮2,⋮5\)

    \(2.3.4.5.6⋮2,⋮5\)

    31 ko chia hết 2, ko chia hết 5

=> 7.8.9.10 + 2.3.4.5.6 + 31 ko chia hết 2, không chia hết 5

b) 1.3.5.7.9 \(⋮\)5, ko chia hết 2

  4100 \(⋮\)5 , \(⋮\)2

=> 1.3.5.7.9 + 4100 \(⋮\)5, ko chia hết 2