cmr
tổng 3 số nguyên lien tiếp chia hết cho 3
tổng 5 số liên tiếp chia hết cho 5
trong 2k+1 nguyên liên tiếp chia hết cho 2k +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 2k+1 là số lẻ nên trung bình cộng dãy đó là số nguyên tổng 2k+1 số nguyên liên tiếp bằng trung bình cộng của 2k+1 số dó nhân 2k+1
mà 2k+1 chia hết cho 2k+1nên tích đó chia hết cho 2k+1
\(=>\) tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1
chúc bạn học tốt
mik ko chắc là mik đúng nx bạn thông cảm nha
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
Vì 2k+1 là số lể nên trung bình cộng dãy đó là số nguyên nên tổng 2k+1 số nguyên liên tiếp =trung bình cộng 2k+1 số đó nhân 2k+1
mà 2k+1 chia hết cho 2k+1 nên tích đó chia hết cho 2k+1\(\Rightarrow\)tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1
theo mình thế này mới đúng
Vì a < b và a và b là 2 số tự nhiên liên tiếp => b = a + 1
Gọi ƯCLN(a,b) = d
=> \(\begin{cases}a⋮d\\b⋮d\end{cases}=>\orbr{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)
=> \(a+1-a⋮d=>1⋮d\)
=> \(d\inƯ\left(1\right)=>d=1\)
Vì (a,b) = 1 => a và b là 2 số nguyên tố cùng nhau
Bài 1 :
a) Gọi 3 số nguyên liên tiếp là :\(n-1,n,n+1\)
\(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3
Gọi năm số nguyên liên tiếp là \(n-2,n-1,n,n+1,n+2\).Ta có :
\(\left(n+2\right)+\left(n-1\right)+n+\left(n+1\right)+\left(n+2\right)=5n\)chia hết cho 5
b) Gọi 2 số nguyên liên tiếp là \(n,n+1\): Ta có
\(n+\left(n+1\right)=2n+1\)
Vì \(2n⋮2,\)\(1\)không chia hết cho \(2\)nên \(2n+1\)không chia hết cho 2
Vậy tổng hai số nguyên liên tiếp không chia hết cho 2
Gọi 4 số nguyên liên tiếp là ;\(n-1,n,n+1,n+2\).Ta có :
\(\left(n-1\right)+n+\left(n+1\right)+\left(n+2\right)=4n+2\)
Vì \(4n⋮4,\)2 không chia hết cho 4 nên \(4n+2\)không chia hết cho 4
Nhận xét : Tổng của k só nguyên liên tiếp chia hết cho k khi và chỉ khi k lẻ
Chúc bạn học tốt ( -_- )
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
a, gọi ba số tự nhiên liên tiếp là a,a+1,a+2
ta có a+(a+1)+(a+2) = 3a +3 chia hết cho 3
vì 3a chia hết cho3 , 3 chia hết cho 3
suy ra ba số tự nhiên liên tiếp chia hết cho 3
b,gọi năm số liên tiếp là a ,a+1,a+2,a+3,a+4
ta có a+(a+1)+(a+2)+(a+3)+(a+4) = 5a +10 chia
hết cho 5
vì 5a chia hết cho 5 ,10 chia hết cho 5
suy ra năm số tự nhiên lien tiếp chia hết cho5
Vì 2k+1 là số lể nên trung bình cộng dãy đó là số nguyên nên tổng 2k+1 số nguyên liên tiếp =trung bình cộng 2k+1 số đó nhân 2k+1
mà 2k+1 chia hết cho 2k+1 nên tích đó chia hết cho 2k+1⇒⇒tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1