2. Chứng tỏ rằng M=75.(42021+42020+....+42+4+1)+ 25 chia hết cho 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M ⋮ 25 vì 75 ⋮ 25
Lại có M = 75 ( 42021 + 42020 + ... + 42 + 4 + 1 )
= 75 . 4 ( 22020 + 22019 + ... + 4 + 1 + 0,25 ) ⋮ 4 vì 4 ⋮ 4
Mà ( 25; 4 ) = 1 ⇒ M ⋮ 100
Vậy M ⋮ 100
A = 1 + 4 + 42 + 43 + ... + 42021
A = 40 + 41 + 42 + 43 +...+ 42021
Xét dãy số 0; 1; 2; 3;...; 2021
Dãy số trên có số số hạng là:
(2021 - 0) : 1 + 1 = 2022
Vậy A có 2022 số hạng
vì 2022 : 3 = 674
Vậy ta nhóm 3 số hạng liên tiếp của A thành một nhóm thì khi đó
A = (1 + 4 + 42) + (43 + 44 + 45) +...+ (42019 + 42020 + 42021)
A = (1 + 4 + 16) + 43.(1 + 4 + 42) + ... +42019.(1 + 4 + 42)
A = 21 + 43.21 +... + 42019.21
A = 21.(1 + 43 + ... + 42019)
21 ⋮ 21 ⇒ 21.(1 + 43 + ...+ 42019) ⋮ 21 ⇒ A ⋮ 21 (đpcm)
Lời giải:
Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$
$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$
$\Rightarrow 3A=4^{2022}-1$
$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$
Ta có đpcm.
\(M=75.4\left(4^{2020}+4^{2019}+...+4+1\right)+75+25=\)
\(=300.\left(4^{2020}+4^{2019}+...+4+1\right)+100=\)
\(=100\left[3.\left(4^{2020}+4^{2019}+...+4+1\right)+1\right]⋮100\)