tìm stn a nhỏ nhất sao cho khi a chia cho 3;5;11 thì được số dư theo thứ tự 3;4;6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm STN nhỏ nhất sao cho khi chia cho 3 thì dư 2, khi chia cho 7 thì dư 6, khi chia cho 25 thì dư 24
Gọi số tự nhiên đó là \(a\).
\(a\)khi chia cho \(3,7,25\)lần lượt có số dư là \(2,6,24\)nên \(a+1\)chia hết cho cả \(3,7,25\)mà \(a\)nhỏ nhất
nên \(a+1\)là \(BCNN\left(3,7,25\right)\).
Phân tích thành tích các thừa số nguyên tố: \(3=3,7=7,25=5^2\)
Do đó \(BCNN\left(3,7,25\right)=3.7.5^2=525\)
\(a+1=525\Leftrightarrow a=524\).
a+8 thì chia hết cho 5 và 11
Để a nhỏ nhất => a+8=BSCNN(5;11)=55=> a=47
a+5 chia hết cho 11;13
=> a+5 thuộc BC(11;13) ; BCNN(11;13) = 143
=> a+5 = 143k=> a = 143k -5 ; với k thuộc N*
vì 99<a<1000=>99<143k-5<1000 =>0,72..<k< 7,02..
=>a nhỏ nhất ; khi k = 1
=>a =143 -5 = 138
Vậy a =138
Ta có a chia 2 dư 1. Chia 3 dư 1; chia 5 dư 4; chia 7 dư 3
a + k chia hết cho 2;3;5;7 (k là hằng số) sao cho: k + 1 chia hết cho 2; k + 1 chia hết cho 3; k + 4 chia hết cho 5; k + 3 chia hết cho 7. Ta thấy cùng 1 số k + 1 chia hết cho 2 và 3. Số k + 1 nhỏ nhất là 6 => k = 5 ko phù hợp cho hai trường hợp còn lại
Vs số k + 1 = 12 ta thấy thoả mãn cả 4 trường hợp => k= 11
=> a + 11 chia hết cho 2; 3;5;7 hay a+11 thuộc BCNN(2;3;5;7)=210
a+11= 210 => a= 210 - 11 => a = 199
Hok tốt nhé!!!!!!
Phần giải biện luận mk ko giỏi nên ko hay lắm ^ - ^
Đáp án:
a= 199
Giải thích các bước giải:
a chia 2 dư 1 nên a+1 chia hết cho 2 hay a+11 cũng chia hết cho 2
a chia 3 dư 1 nên a+2 chia hết cho 3 hay a+2+9=a+11 cũng chia hết cho 3
a chia 5 dư 4 nên a+1 chia hết cho 5, hay a+1+10=a+11 cũng chia hết cho 5
a chia 7 dư 3 nên a+4 chia hết cho 7 hay a+4+7=a+11 chia hết cho 7
Suy ra a+11 cùng chia hết cho 2; 3; 5; 7
a là số nhỏ nhất nên a+11 cũng là số nhỏ nhất
Do đó, a+11=BCNN (2;3;5;7)
Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau
Do vậy, a+11=2.3.5.7=210
Vậy a=199
hình như cậu nhầm đề thì phải