cho tam giác ABC cân tại A,kẻ các tia p/g BD,CE,gọi MD là trung điểm
a) C/M AM là tia p/g của góc BAC
b) C/M 3 đg thẳng hàng AM,BD,CE đồng quy tại h
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh được ∆ A M B = ∆ A M C (c.c.c).
Từ đó suy ra AM là tia phân giác của góc BAC.
b) Xét tam giác ABC có AM, BD,CE là các tia phân giác. Từ tính chất ba đường phân giác trong tam giác, suy ra ba đường thẳng AM,BD,CE đồng quy.
a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.
Xét tam giác DMB và tam giác GMC có:
DM = GM
BM = CM
\(\widehat{DMB}=\widehat{GMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)
\(\Rightarrow BD=CG\)
b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)
Xét tam giác FBM và tam giác ECM có:
\(\widehat{FMB}=\widehat{EMC}=90^o\)
BM = CM
\(\widehat{FBM}=\widehat{ECM}\)
\(\Rightarrow\Delta FBM=\Delta ECM\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BF=CE\left(đpcm\right)\)
CO TAM GIAC ABC CAN TAI A
=>AB=AC( DN TAM GIÁC CÂN)
SUY RA GÓC ABC = GÓC ACB( DN TAM GIÁC CÂN)
CÓ GÓC ABC VÀ GÓC ABD LÀ 2 GÓC KỀ BÙ
SUY RA GÓC ABD+ GÓC ABC = 180 ĐỘ
CÓ GÓC ACB VÀ GÓC ACE LÀ 2 GÓC KỀ BÙ
SUY RA GÓC ACB + GÓC ACE = 180 ĐỘ
MÀ GÓC ABC = GÓC ACB( CMT)
SUY RA GÓC ABD+ GÓC ABC = GÓC ACB + ACE( =180 ĐỘ)
=> GÓC ABD= GÓC ACE
XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ:
AB=AC( CMT)
GÓC ABD = GỐC ACE ( GMT)
DB=EC( GT)
=> TAM GIÁC ADB = TAM GIÁC AEC( C-G-C)
=>AD=AE( 2 CẠNH TƯƠNG ỨNG)
=> TAM GIAC ADE CAN TAI A( DN TAM GIAC CAN)
b)CÓ TAM GIÁC ADE CÂN TẠI A( CMT)
=>GÓC D = GÓC E( ĐN TAM GIÁC CÂN)
CÓ M LÀ TRUNG ĐIỂM CỦA BC=>BM=CM
CO ME = MC+CE
MD=MB+BD
MA CE=BD
MB=MC
=>MD=ME
XÉT TAM GIÁC AMD VÀ TAM GIÁC AME CÓ:
AD= AE(CM CÂU a)
GÓC D=GÓC E(CMT)
MD=ME( CMT)
SUY RA TAM GIÁC AMD= TAM GIÁC AME( C-G-C)
=>GÓC ĐAM = GÓC EAM( 2 GÓC TƯƠNG ỨNG)
SUY RA AM LÀ TIA PHÂN GIÁC CỦA GÓC DAE
CÓ TAM GIÁC AMD = TAM GIÁC AME
SUY RA GÓC AMD = GÓC AME( 2 GÓC TƯƠNG ỨNG)
MÀ 2 GÓC NÀY LÀ 2 GÓC KỀ BÙ
SUY RA AMD+AME = 180 ĐỘ
CÓ GÓC AMD = GÓC AME = 180 ĐỘ :2 = 90 ĐỘ
SUY RA AM VUONG GOC VS DE
CHO BN 2 CAU TRC LAM NAY
NHO K CHO MINH NHA
CO TAM GIAC ADM = TAM GIAC ACE( CM O CAU A)
SUY RA GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)
XÉT TAM GIC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:
AB = AC ( CM Ở CÂU a)
GÓC DAB = GÓC EAC ( CMT)
=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)
=> BH = CK( 2 CẠNH TƯƠNG ỨNG)
d)KHI NÀO MÌNH NGHĨ XONG MÌNH SẼ NS CHO CẬU
2
a)
Vì tam giác ABC cân tại A (gt)
suy ra: góc ABC = góc ACB
hay góc EBC = góc DCB
Xét tam giác EBC và tam giác DCB có
góc BEC = góc CDB ( =90)
góc EBC = góc DCB (CMT)
BC chung
Suy ra tam giác EBC = tam giác DCB (ch-gn)
suy ra BE=CD (cctu)
b) Xét tg ABC có:
+ BD là đườg cao (BD vuông góc AC)
+ CE là đg cao (CE vuông góc AB)
Mà BD giao CE tại I (gt)
=> I là trực tâm
=> AI là đường cao
Xét tg ABC cân tai A có: AI là đường cao (cmt)
=> AI cũng là đường pg góc BAC ( Tc tg cân)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔAMH có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAMH cân tại A
hay AM=AH(1)
c: Xét ΔANH có
AD là đường cao
AD là đường trung tuyến
Do đó: ΔANH cân tại A
hay AH=AN(2)
Từ (1) và (2) suy ra AM=AN
hay ΔAMN cân tại A
a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE
=> ^ABD = ^ACE
TG ABD = TG ACE (c.g.c)
=> ABD=ACE => TG ADE cân(đpcm)
b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)
=> BH=CK (đpcm)
=> DH=KE
* Ta có: AD = AE (vì TG ADE cân)
DH=KE(CMT)
mà AD - DH = AH
AE - KE = AK
=> AH = AK
và DH=KE ( CMT)
Do đó: HK là đường trung bình của TG ADE
=> HK // DE
c, ý b là BOC?
^HBD=^KCE (TG HBD= TG KCE )
=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)
=> TG OBC cân
*
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha
a) Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (do ΔABCΔABC cân đỉnh A)
ˆABD=ˆACEABD^=ACE^ (cùng +45o+45o=180^o)
BD=CEBD=CE (giả thiết)
⇒ΔABD=ΔACE⇒ΔABD=ΔACE (c.g.c)
⇒AD=AE⇒AD=AE (hai cạnh tương ứng)
⇒ΔADE⇒ΔADE cân đỉnh A
b) Ta có: BD+BM=CE+CM⇒DM=EMBD+BM=CE+CM⇒DM=EM
Xét ΔAMDΔAMD và ΔAMEΔAME có:
AD=AEAD=AE (cmt)
AMAM chung
DM=EMDM=EM (cmt)
⇒ΔAMD=ΔAME⇒ΔAMD=ΔAME (c.c.c)
⇒ˆMAD=ˆMAE⇒MAD^=MAE^ (hai góc tương ứng)
⇒AM⇒AM là phân giác ˆDAEDAE^ (đpcm)
Ta có ΔAMD=ΔAME⇒ˆAMD=ˆAMEΔAMD=ΔAME⇒AMD^=AME^
Mà ˆAMD+ˆAME=180oAMD^+AME^=180o
⇒ˆAMD=ˆAME=180o2=90o⇒AMD^=AME^=180o2=90o
⇒AM⊥DE⇒AM⊥DE (đpcm)
c) Xét ΔΔ vuông ABHABH và ΔΔ vuông ACKACK có:
AB=ACAB=AC (gt)
ˆBAH=ˆCAKBAH^=CAK^ (do ΔABD=ΔACEΔABD=ΔACE)
⇒ΔABH=ΔACK⇒ΔABH=ΔACK (ch-gn)
⇒BH=CK⇒BH=CK (hai cạnh tương ứng) (đpcm)
CHÚC BẠN HỌC GIỎI NHÉ THEO DÕI CHÉO NHA?
Sửa đề: M là trung điểm của BC
a: ΔABC cân tại A có AM là trung tuyến
nên AM là phân giác của góc BAC
b: Xét ΔABC có
AM,BD,CE là các đường phân giác
=>AM,BD,CE đồng quy tại H